This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The partial sums in the infinite series 1 + A ^ 1 + A ^ 2 ... converge to ( 1 / ( 1 - A ) ) . (Contributed by NM, 15-May-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | geolim.1 | |- ( ph -> A e. CC ) |
|
| geolim.2 | |- ( ph -> ( abs ` A ) < 1 ) |
||
| geolim.3 | |- ( ( ph /\ k e. NN0 ) -> ( F ` k ) = ( A ^ k ) ) |
||
| Assertion | geolim | |- ( ph -> seq 0 ( + , F ) ~~> ( 1 / ( 1 - A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | geolim.1 | |- ( ph -> A e. CC ) |
|
| 2 | geolim.2 | |- ( ph -> ( abs ` A ) < 1 ) |
|
| 3 | geolim.3 | |- ( ( ph /\ k e. NN0 ) -> ( F ` k ) = ( A ^ k ) ) |
|
| 4 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 5 | 0zd | |- ( ph -> 0 e. ZZ ) |
|
| 6 | 1 2 | expcnv | |- ( ph -> ( n e. NN0 |-> ( A ^ n ) ) ~~> 0 ) |
| 7 | ax-1cn | |- 1 e. CC |
|
| 8 | subcl | |- ( ( 1 e. CC /\ A e. CC ) -> ( 1 - A ) e. CC ) |
|
| 9 | 7 1 8 | sylancr | |- ( ph -> ( 1 - A ) e. CC ) |
| 10 | 1re | |- 1 e. RR |
|
| 11 | 10 | ltnri | |- -. 1 < 1 |
| 12 | fveq2 | |- ( A = 1 -> ( abs ` A ) = ( abs ` 1 ) ) |
|
| 13 | abs1 | |- ( abs ` 1 ) = 1 |
|
| 14 | 12 13 | eqtrdi | |- ( A = 1 -> ( abs ` A ) = 1 ) |
| 15 | 14 | breq1d | |- ( A = 1 -> ( ( abs ` A ) < 1 <-> 1 < 1 ) ) |
| 16 | 11 15 | mtbiri | |- ( A = 1 -> -. ( abs ` A ) < 1 ) |
| 17 | 16 | necon2ai | |- ( ( abs ` A ) < 1 -> A =/= 1 ) |
| 18 | 2 17 | syl | |- ( ph -> A =/= 1 ) |
| 19 | 18 | necomd | |- ( ph -> 1 =/= A ) |
| 20 | subeq0 | |- ( ( 1 e. CC /\ A e. CC ) -> ( ( 1 - A ) = 0 <-> 1 = A ) ) |
|
| 21 | 7 1 20 | sylancr | |- ( ph -> ( ( 1 - A ) = 0 <-> 1 = A ) ) |
| 22 | 21 | necon3bid | |- ( ph -> ( ( 1 - A ) =/= 0 <-> 1 =/= A ) ) |
| 23 | 19 22 | mpbird | |- ( ph -> ( 1 - A ) =/= 0 ) |
| 24 | 1 9 23 | divcld | |- ( ph -> ( A / ( 1 - A ) ) e. CC ) |
| 25 | nn0ex | |- NN0 e. _V |
|
| 26 | 25 | mptex | |- ( n e. NN0 |-> ( ( A ^ ( n + 1 ) ) / ( 1 - A ) ) ) e. _V |
| 27 | 26 | a1i | |- ( ph -> ( n e. NN0 |-> ( ( A ^ ( n + 1 ) ) / ( 1 - A ) ) ) e. _V ) |
| 28 | oveq2 | |- ( n = j -> ( A ^ n ) = ( A ^ j ) ) |
|
| 29 | eqid | |- ( n e. NN0 |-> ( A ^ n ) ) = ( n e. NN0 |-> ( A ^ n ) ) |
|
| 30 | ovex | |- ( A ^ j ) e. _V |
|
| 31 | 28 29 30 | fvmpt | |- ( j e. NN0 -> ( ( n e. NN0 |-> ( A ^ n ) ) ` j ) = ( A ^ j ) ) |
| 32 | 31 | adantl | |- ( ( ph /\ j e. NN0 ) -> ( ( n e. NN0 |-> ( A ^ n ) ) ` j ) = ( A ^ j ) ) |
| 33 | expcl | |- ( ( A e. CC /\ j e. NN0 ) -> ( A ^ j ) e. CC ) |
|
| 34 | 1 33 | sylan | |- ( ( ph /\ j e. NN0 ) -> ( A ^ j ) e. CC ) |
| 35 | 32 34 | eqeltrd | |- ( ( ph /\ j e. NN0 ) -> ( ( n e. NN0 |-> ( A ^ n ) ) ` j ) e. CC ) |
| 36 | expp1 | |- ( ( A e. CC /\ j e. NN0 ) -> ( A ^ ( j + 1 ) ) = ( ( A ^ j ) x. A ) ) |
|
| 37 | 1 36 | sylan | |- ( ( ph /\ j e. NN0 ) -> ( A ^ ( j + 1 ) ) = ( ( A ^ j ) x. A ) ) |
| 38 | 1 | adantr | |- ( ( ph /\ j e. NN0 ) -> A e. CC ) |
| 39 | 34 38 | mulcomd | |- ( ( ph /\ j e. NN0 ) -> ( ( A ^ j ) x. A ) = ( A x. ( A ^ j ) ) ) |
| 40 | 37 39 | eqtrd | |- ( ( ph /\ j e. NN0 ) -> ( A ^ ( j + 1 ) ) = ( A x. ( A ^ j ) ) ) |
| 41 | 40 | oveq1d | |- ( ( ph /\ j e. NN0 ) -> ( ( A ^ ( j + 1 ) ) / ( 1 - A ) ) = ( ( A x. ( A ^ j ) ) / ( 1 - A ) ) ) |
| 42 | 9 | adantr | |- ( ( ph /\ j e. NN0 ) -> ( 1 - A ) e. CC ) |
| 43 | 23 | adantr | |- ( ( ph /\ j e. NN0 ) -> ( 1 - A ) =/= 0 ) |
| 44 | 38 34 42 43 | div23d | |- ( ( ph /\ j e. NN0 ) -> ( ( A x. ( A ^ j ) ) / ( 1 - A ) ) = ( ( A / ( 1 - A ) ) x. ( A ^ j ) ) ) |
| 45 | 41 44 | eqtrd | |- ( ( ph /\ j e. NN0 ) -> ( ( A ^ ( j + 1 ) ) / ( 1 - A ) ) = ( ( A / ( 1 - A ) ) x. ( A ^ j ) ) ) |
| 46 | oveq1 | |- ( n = j -> ( n + 1 ) = ( j + 1 ) ) |
|
| 47 | 46 | oveq2d | |- ( n = j -> ( A ^ ( n + 1 ) ) = ( A ^ ( j + 1 ) ) ) |
| 48 | 47 | oveq1d | |- ( n = j -> ( ( A ^ ( n + 1 ) ) / ( 1 - A ) ) = ( ( A ^ ( j + 1 ) ) / ( 1 - A ) ) ) |
| 49 | eqid | |- ( n e. NN0 |-> ( ( A ^ ( n + 1 ) ) / ( 1 - A ) ) ) = ( n e. NN0 |-> ( ( A ^ ( n + 1 ) ) / ( 1 - A ) ) ) |
|
| 50 | ovex | |- ( ( A ^ ( j + 1 ) ) / ( 1 - A ) ) e. _V |
|
| 51 | 48 49 50 | fvmpt | |- ( j e. NN0 -> ( ( n e. NN0 |-> ( ( A ^ ( n + 1 ) ) / ( 1 - A ) ) ) ` j ) = ( ( A ^ ( j + 1 ) ) / ( 1 - A ) ) ) |
| 52 | 51 | adantl | |- ( ( ph /\ j e. NN0 ) -> ( ( n e. NN0 |-> ( ( A ^ ( n + 1 ) ) / ( 1 - A ) ) ) ` j ) = ( ( A ^ ( j + 1 ) ) / ( 1 - A ) ) ) |
| 53 | 32 | oveq2d | |- ( ( ph /\ j e. NN0 ) -> ( ( A / ( 1 - A ) ) x. ( ( n e. NN0 |-> ( A ^ n ) ) ` j ) ) = ( ( A / ( 1 - A ) ) x. ( A ^ j ) ) ) |
| 54 | 45 52 53 | 3eqtr4d | |- ( ( ph /\ j e. NN0 ) -> ( ( n e. NN0 |-> ( ( A ^ ( n + 1 ) ) / ( 1 - A ) ) ) ` j ) = ( ( A / ( 1 - A ) ) x. ( ( n e. NN0 |-> ( A ^ n ) ) ` j ) ) ) |
| 55 | 4 5 6 24 27 35 54 | climmulc2 | |- ( ph -> ( n e. NN0 |-> ( ( A ^ ( n + 1 ) ) / ( 1 - A ) ) ) ~~> ( ( A / ( 1 - A ) ) x. 0 ) ) |
| 56 | 24 | mul01d | |- ( ph -> ( ( A / ( 1 - A ) ) x. 0 ) = 0 ) |
| 57 | 55 56 | breqtrd | |- ( ph -> ( n e. NN0 |-> ( ( A ^ ( n + 1 ) ) / ( 1 - A ) ) ) ~~> 0 ) |
| 58 | 9 23 | reccld | |- ( ph -> ( 1 / ( 1 - A ) ) e. CC ) |
| 59 | seqex | |- seq 0 ( + , F ) e. _V |
|
| 60 | 59 | a1i | |- ( ph -> seq 0 ( + , F ) e. _V ) |
| 61 | peano2nn0 | |- ( j e. NN0 -> ( j + 1 ) e. NN0 ) |
|
| 62 | expcl | |- ( ( A e. CC /\ ( j + 1 ) e. NN0 ) -> ( A ^ ( j + 1 ) ) e. CC ) |
|
| 63 | 1 61 62 | syl2an | |- ( ( ph /\ j e. NN0 ) -> ( A ^ ( j + 1 ) ) e. CC ) |
| 64 | 63 42 43 | divcld | |- ( ( ph /\ j e. NN0 ) -> ( ( A ^ ( j + 1 ) ) / ( 1 - A ) ) e. CC ) |
| 65 | 52 64 | eqeltrd | |- ( ( ph /\ j e. NN0 ) -> ( ( n e. NN0 |-> ( ( A ^ ( n + 1 ) ) / ( 1 - A ) ) ) ` j ) e. CC ) |
| 66 | nn0cn | |- ( j e. NN0 -> j e. CC ) |
|
| 67 | 66 | adantl | |- ( ( ph /\ j e. NN0 ) -> j e. CC ) |
| 68 | pncan | |- ( ( j e. CC /\ 1 e. CC ) -> ( ( j + 1 ) - 1 ) = j ) |
|
| 69 | 67 7 68 | sylancl | |- ( ( ph /\ j e. NN0 ) -> ( ( j + 1 ) - 1 ) = j ) |
| 70 | 69 | oveq2d | |- ( ( ph /\ j e. NN0 ) -> ( 0 ... ( ( j + 1 ) - 1 ) ) = ( 0 ... j ) ) |
| 71 | 70 | sumeq1d | |- ( ( ph /\ j e. NN0 ) -> sum_ k e. ( 0 ... ( ( j + 1 ) - 1 ) ) ( A ^ k ) = sum_ k e. ( 0 ... j ) ( A ^ k ) ) |
| 72 | 7 | a1i | |- ( ( ph /\ j e. NN0 ) -> 1 e. CC ) |
| 73 | 72 63 42 43 | divsubdird | |- ( ( ph /\ j e. NN0 ) -> ( ( 1 - ( A ^ ( j + 1 ) ) ) / ( 1 - A ) ) = ( ( 1 / ( 1 - A ) ) - ( ( A ^ ( j + 1 ) ) / ( 1 - A ) ) ) ) |
| 74 | 18 | adantr | |- ( ( ph /\ j e. NN0 ) -> A =/= 1 ) |
| 75 | 61 | adantl | |- ( ( ph /\ j e. NN0 ) -> ( j + 1 ) e. NN0 ) |
| 76 | 38 74 75 | geoser | |- ( ( ph /\ j e. NN0 ) -> sum_ k e. ( 0 ... ( ( j + 1 ) - 1 ) ) ( A ^ k ) = ( ( 1 - ( A ^ ( j + 1 ) ) ) / ( 1 - A ) ) ) |
| 77 | 52 | oveq2d | |- ( ( ph /\ j e. NN0 ) -> ( ( 1 / ( 1 - A ) ) - ( ( n e. NN0 |-> ( ( A ^ ( n + 1 ) ) / ( 1 - A ) ) ) ` j ) ) = ( ( 1 / ( 1 - A ) ) - ( ( A ^ ( j + 1 ) ) / ( 1 - A ) ) ) ) |
| 78 | 73 76 77 | 3eqtr4d | |- ( ( ph /\ j e. NN0 ) -> sum_ k e. ( 0 ... ( ( j + 1 ) - 1 ) ) ( A ^ k ) = ( ( 1 / ( 1 - A ) ) - ( ( n e. NN0 |-> ( ( A ^ ( n + 1 ) ) / ( 1 - A ) ) ) ` j ) ) ) |
| 79 | simpll | |- ( ( ( ph /\ j e. NN0 ) /\ k e. ( 0 ... j ) ) -> ph ) |
|
| 80 | elfznn0 | |- ( k e. ( 0 ... j ) -> k e. NN0 ) |
|
| 81 | 80 | adantl | |- ( ( ( ph /\ j e. NN0 ) /\ k e. ( 0 ... j ) ) -> k e. NN0 ) |
| 82 | 79 81 3 | syl2anc | |- ( ( ( ph /\ j e. NN0 ) /\ k e. ( 0 ... j ) ) -> ( F ` k ) = ( A ^ k ) ) |
| 83 | simpr | |- ( ( ph /\ j e. NN0 ) -> j e. NN0 ) |
|
| 84 | 83 4 | eleqtrdi | |- ( ( ph /\ j e. NN0 ) -> j e. ( ZZ>= ` 0 ) ) |
| 85 | 79 1 | syl | |- ( ( ( ph /\ j e. NN0 ) /\ k e. ( 0 ... j ) ) -> A e. CC ) |
| 86 | 85 81 | expcld | |- ( ( ( ph /\ j e. NN0 ) /\ k e. ( 0 ... j ) ) -> ( A ^ k ) e. CC ) |
| 87 | 82 84 86 | fsumser | |- ( ( ph /\ j e. NN0 ) -> sum_ k e. ( 0 ... j ) ( A ^ k ) = ( seq 0 ( + , F ) ` j ) ) |
| 88 | 71 78 87 | 3eqtr3rd | |- ( ( ph /\ j e. NN0 ) -> ( seq 0 ( + , F ) ` j ) = ( ( 1 / ( 1 - A ) ) - ( ( n e. NN0 |-> ( ( A ^ ( n + 1 ) ) / ( 1 - A ) ) ) ` j ) ) ) |
| 89 | 4 5 57 58 60 65 88 | climsubc2 | |- ( ph -> seq 0 ( + , F ) ~~> ( ( 1 / ( 1 - A ) ) - 0 ) ) |
| 90 | 58 | subid1d | |- ( ph -> ( ( 1 / ( 1 - A ) ) - 0 ) = ( 1 / ( 1 - A ) ) ) |
| 91 | 89 90 | breqtrd | |- ( ph -> seq 0 ( + , F ) ~~> ( 1 / ( 1 - A ) ) ) |