This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the finite geometric series 1 + A ^ 1 + A ^ 2 + ... + A ^ ( N - 1 ) . This is Metamath 100 proof #66. (Contributed by NM, 12-May-2006) (Proof shortened by Mario Carneiro, 15-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | geoser.1 | |- ( ph -> A e. CC ) |
|
| geoser.2 | |- ( ph -> A =/= 1 ) |
||
| geoser.3 | |- ( ph -> N e. NN0 ) |
||
| Assertion | geoser | |- ( ph -> sum_ k e. ( 0 ... ( N - 1 ) ) ( A ^ k ) = ( ( 1 - ( A ^ N ) ) / ( 1 - A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | geoser.1 | |- ( ph -> A e. CC ) |
|
| 2 | geoser.2 | |- ( ph -> A =/= 1 ) |
|
| 3 | geoser.3 | |- ( ph -> N e. NN0 ) |
|
| 4 | 0nn0 | |- 0 e. NN0 |
|
| 5 | 4 | a1i | |- ( ph -> 0 e. NN0 ) |
| 6 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 7 | 3 6 | eleqtrdi | |- ( ph -> N e. ( ZZ>= ` 0 ) ) |
| 8 | 1 2 5 7 | geoserg | |- ( ph -> sum_ k e. ( 0 ..^ N ) ( A ^ k ) = ( ( ( A ^ 0 ) - ( A ^ N ) ) / ( 1 - A ) ) ) |
| 9 | 3 | nn0zd | |- ( ph -> N e. ZZ ) |
| 10 | fzoval | |- ( N e. ZZ -> ( 0 ..^ N ) = ( 0 ... ( N - 1 ) ) ) |
|
| 11 | 9 10 | syl | |- ( ph -> ( 0 ..^ N ) = ( 0 ... ( N - 1 ) ) ) |
| 12 | 11 | sumeq1d | |- ( ph -> sum_ k e. ( 0 ..^ N ) ( A ^ k ) = sum_ k e. ( 0 ... ( N - 1 ) ) ( A ^ k ) ) |
| 13 | 1 | exp0d | |- ( ph -> ( A ^ 0 ) = 1 ) |
| 14 | 13 | oveq1d | |- ( ph -> ( ( A ^ 0 ) - ( A ^ N ) ) = ( 1 - ( A ^ N ) ) ) |
| 15 | 14 | oveq1d | |- ( ph -> ( ( ( A ^ 0 ) - ( A ^ N ) ) / ( 1 - A ) ) = ( ( 1 - ( A ^ N ) ) / ( 1 - A ) ) ) |
| 16 | 8 12 15 | 3eqtr3d | |- ( ph -> sum_ k e. ( 0 ... ( N - 1 ) ) ( A ^ k ) = ( ( 1 - ( A ^ N ) ) / ( 1 - A ) ) ) |