This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The powerset of a Dedekind-infinite set does not inject into its Cartesian product with itself. (Contributed by Mario Carneiro, 31-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pwxpndom | |- ( _om ~<_ A -> -. ~P A ~<_ ( A X. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwxpndom2 | |- ( _om ~<_ A -> -. ~P A ~<_ ( A |_| ( A X. A ) ) ) |
|
| 2 | reldom | |- Rel ~<_ |
|
| 3 | 2 | brrelex2i | |- ( _om ~<_ A -> A e. _V ) |
| 4 | 3 3 | xpexd | |- ( _om ~<_ A -> ( A X. A ) e. _V ) |
| 5 | djudoml | |- ( ( ( A X. A ) e. _V /\ A e. _V ) -> ( A X. A ) ~<_ ( ( A X. A ) |_| A ) ) |
|
| 6 | 4 3 5 | syl2anc | |- ( _om ~<_ A -> ( A X. A ) ~<_ ( ( A X. A ) |_| A ) ) |
| 7 | djucomen | |- ( ( ( A X. A ) e. _V /\ A e. _V ) -> ( ( A X. A ) |_| A ) ~~ ( A |_| ( A X. A ) ) ) |
|
| 8 | 4 3 7 | syl2anc | |- ( _om ~<_ A -> ( ( A X. A ) |_| A ) ~~ ( A |_| ( A X. A ) ) ) |
| 9 | domentr | |- ( ( ( A X. A ) ~<_ ( ( A X. A ) |_| A ) /\ ( ( A X. A ) |_| A ) ~~ ( A |_| ( A X. A ) ) ) -> ( A X. A ) ~<_ ( A |_| ( A X. A ) ) ) |
|
| 10 | 6 8 9 | syl2anc | |- ( _om ~<_ A -> ( A X. A ) ~<_ ( A |_| ( A X. A ) ) ) |
| 11 | domtr | |- ( ( ~P A ~<_ ( A X. A ) /\ ( A X. A ) ~<_ ( A |_| ( A X. A ) ) ) -> ~P A ~<_ ( A |_| ( A X. A ) ) ) |
|
| 12 | 11 | expcom | |- ( ( A X. A ) ~<_ ( A |_| ( A X. A ) ) -> ( ~P A ~<_ ( A X. A ) -> ~P A ~<_ ( A |_| ( A X. A ) ) ) ) |
| 13 | 10 12 | syl | |- ( _om ~<_ A -> ( ~P A ~<_ ( A X. A ) -> ~P A ~<_ ( A |_| ( A X. A ) ) ) ) |
| 14 | 1 13 | mtod | |- ( _om ~<_ A -> -. ~P A ~<_ ( A X. A ) ) |