This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Dominance law for Cartesian product. Theorem 6L(c) of Enderton p. 149. (Contributed by NM, 25-Mar-2006) (Revised by Mario Carneiro, 26-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpdom1g | |- ( ( C e. V /\ A ~<_ B ) -> ( A X. C ) ~<_ ( B X. C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom | |- Rel ~<_ |
|
| 2 | 1 | brrelex1i | |- ( A ~<_ B -> A e. _V ) |
| 3 | xpcomeng | |- ( ( A e. _V /\ C e. V ) -> ( A X. C ) ~~ ( C X. A ) ) |
|
| 4 | 3 | ancoms | |- ( ( C e. V /\ A e. _V ) -> ( A X. C ) ~~ ( C X. A ) ) |
| 5 | 2 4 | sylan2 | |- ( ( C e. V /\ A ~<_ B ) -> ( A X. C ) ~~ ( C X. A ) ) |
| 6 | xpdom2g | |- ( ( C e. V /\ A ~<_ B ) -> ( C X. A ) ~<_ ( C X. B ) ) |
|
| 7 | 1 | brrelex2i | |- ( A ~<_ B -> B e. _V ) |
| 8 | xpcomeng | |- ( ( C e. V /\ B e. _V ) -> ( C X. B ) ~~ ( B X. C ) ) |
|
| 9 | 7 8 | sylan2 | |- ( ( C e. V /\ A ~<_ B ) -> ( C X. B ) ~~ ( B X. C ) ) |
| 10 | domentr | |- ( ( ( C X. A ) ~<_ ( C X. B ) /\ ( C X. B ) ~~ ( B X. C ) ) -> ( C X. A ) ~<_ ( B X. C ) ) |
|
| 11 | 6 9 10 | syl2anc | |- ( ( C e. V /\ A ~<_ B ) -> ( C X. A ) ~<_ ( B X. C ) ) |
| 12 | endomtr | |- ( ( ( A X. C ) ~~ ( C X. A ) /\ ( C X. A ) ~<_ ( B X. C ) ) -> ( A X. C ) ~<_ ( B X. C ) ) |
|
| 13 | 5 11 12 | syl2anc | |- ( ( C e. V /\ A ~<_ B ) -> ( A X. C ) ~<_ ( B X. C ) ) |