This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Strict dominance over 0 is the same as dominance over 1. For a shorter proof requiring ax-un , see 0sdom1domALT . (Contributed by NM, 28-Sep-2004) Avoid ax-un . (Revised by BTernaryTau, 7-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0sdom1dom | |- ( (/) ~< A <-> 1o ~<_ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relsdom | |- Rel ~< |
|
| 2 | 1 | brrelex2i | |- ( (/) ~< A -> A e. _V ) |
| 3 | reldom | |- Rel ~<_ |
|
| 4 | 3 | brrelex2i | |- ( 1o ~<_ A -> A e. _V ) |
| 5 | 0sdomg | |- ( A e. _V -> ( (/) ~< A <-> A =/= (/) ) ) |
|
| 6 | n0 | |- ( A =/= (/) <-> E. x x e. A ) |
|
| 7 | snssi | |- ( x e. A -> { x } C_ A ) |
|
| 8 | df1o2 | |- 1o = { (/) } |
|
| 9 | 0ex | |- (/) e. _V |
|
| 10 | vex | |- x e. _V |
|
| 11 | en2sn | |- ( ( (/) e. _V /\ x e. _V ) -> { (/) } ~~ { x } ) |
|
| 12 | 9 10 11 | mp2an | |- { (/) } ~~ { x } |
| 13 | 8 12 | eqbrtri | |- 1o ~~ { x } |
| 14 | endom | |- ( 1o ~~ { x } -> 1o ~<_ { x } ) |
|
| 15 | 13 14 | ax-mp | |- 1o ~<_ { x } |
| 16 | domssr | |- ( ( A e. _V /\ { x } C_ A /\ 1o ~<_ { x } ) -> 1o ~<_ A ) |
|
| 17 | 15 16 | mp3an3 | |- ( ( A e. _V /\ { x } C_ A ) -> 1o ~<_ A ) |
| 18 | 17 | ex | |- ( A e. _V -> ( { x } C_ A -> 1o ~<_ A ) ) |
| 19 | 7 18 | syl5 | |- ( A e. _V -> ( x e. A -> 1o ~<_ A ) ) |
| 20 | 19 | exlimdv | |- ( A e. _V -> ( E. x x e. A -> 1o ~<_ A ) ) |
| 21 | 6 20 | biimtrid | |- ( A e. _V -> ( A =/= (/) -> 1o ~<_ A ) ) |
| 22 | 1n0 | |- 1o =/= (/) |
|
| 23 | dom0 | |- ( 1o ~<_ (/) <-> 1o = (/) ) |
|
| 24 | 22 23 | nemtbir | |- -. 1o ~<_ (/) |
| 25 | breq2 | |- ( A = (/) -> ( 1o ~<_ A <-> 1o ~<_ (/) ) ) |
|
| 26 | 24 25 | mtbiri | |- ( A = (/) -> -. 1o ~<_ A ) |
| 27 | 26 | necon2ai | |- ( 1o ~<_ A -> A =/= (/) ) |
| 28 | 21 27 | impbid1 | |- ( A e. _V -> ( A =/= (/) <-> 1o ~<_ A ) ) |
| 29 | 5 28 | bitrd | |- ( A e. _V -> ( (/) ~< A <-> 1o ~<_ A ) ) |
| 30 | 2 4 29 | pm5.21nii | |- ( (/) ~< A <-> 1o ~<_ A ) |