This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A functor restricted to a subcategory is a functor. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcres.f | |- ( ph -> F e. ( C Func D ) ) |
|
| funcres.h | |- ( ph -> H e. ( Subcat ` C ) ) |
||
| Assertion | funcres | |- ( ph -> ( F |`f H ) e. ( ( C |`cat H ) Func D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcres.f | |- ( ph -> F e. ( C Func D ) ) |
|
| 2 | funcres.h | |- ( ph -> H e. ( Subcat ` C ) ) |
|
| 3 | 1 2 | resfval | |- ( ph -> ( F |`f H ) = <. ( ( 1st ` F ) |` dom dom H ) , ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) >. ) |
| 4 | 3 | fveq2d | |- ( ph -> ( 2nd ` ( F |`f H ) ) = ( 2nd ` <. ( ( 1st ` F ) |` dom dom H ) , ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) >. ) ) |
| 5 | fvex | |- ( 1st ` F ) e. _V |
|
| 6 | 5 | resex | |- ( ( 1st ` F ) |` dom dom H ) e. _V |
| 7 | dmexg | |- ( H e. ( Subcat ` C ) -> dom H e. _V ) |
|
| 8 | mptexg | |- ( dom H e. _V -> ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) e. _V ) |
|
| 9 | 2 7 8 | 3syl | |- ( ph -> ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) e. _V ) |
| 10 | op2ndg | |- ( ( ( ( 1st ` F ) |` dom dom H ) e. _V /\ ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) e. _V ) -> ( 2nd ` <. ( ( 1st ` F ) |` dom dom H ) , ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) >. ) = ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) ) |
|
| 11 | 6 9 10 | sylancr | |- ( ph -> ( 2nd ` <. ( ( 1st ` F ) |` dom dom H ) , ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) >. ) = ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) ) |
| 12 | 4 11 | eqtrd | |- ( ph -> ( 2nd ` ( F |`f H ) ) = ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) ) |
| 13 | 12 | opeq2d | |- ( ph -> <. ( ( 1st ` F ) |` dom dom H ) , ( 2nd ` ( F |`f H ) ) >. = <. ( ( 1st ` F ) |` dom dom H ) , ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) >. ) |
| 14 | 3 13 | eqtr4d | |- ( ph -> ( F |`f H ) = <. ( ( 1st ` F ) |` dom dom H ) , ( 2nd ` ( F |`f H ) ) >. ) |
| 15 | eqid | |- ( Base ` ( C |`cat H ) ) = ( Base ` ( C |`cat H ) ) |
|
| 16 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 17 | eqid | |- ( Hom ` ( C |`cat H ) ) = ( Hom ` ( C |`cat H ) ) |
|
| 18 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 19 | eqid | |- ( Id ` ( C |`cat H ) ) = ( Id ` ( C |`cat H ) ) |
|
| 20 | eqid | |- ( Id ` D ) = ( Id ` D ) |
|
| 21 | eqid | |- ( comp ` ( C |`cat H ) ) = ( comp ` ( C |`cat H ) ) |
|
| 22 | eqid | |- ( comp ` D ) = ( comp ` D ) |
|
| 23 | eqid | |- ( C |`cat H ) = ( C |`cat H ) |
|
| 24 | 23 2 | subccat | |- ( ph -> ( C |`cat H ) e. Cat ) |
| 25 | funcrcl | |- ( F e. ( C Func D ) -> ( C e. Cat /\ D e. Cat ) ) |
|
| 26 | 1 25 | syl | |- ( ph -> ( C e. Cat /\ D e. Cat ) ) |
| 27 | 26 | simprd | |- ( ph -> D e. Cat ) |
| 28 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 29 | relfunc | |- Rel ( C Func D ) |
|
| 30 | 1st2ndbr | |- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
|
| 31 | 29 1 30 | sylancr | |- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 32 | 28 16 31 | funcf1 | |- ( ph -> ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) ) |
| 33 | eqidd | |- ( ph -> dom dom H = dom dom H ) |
|
| 34 | 2 33 | subcfn | |- ( ph -> H Fn ( dom dom H X. dom dom H ) ) |
| 35 | 2 34 28 | subcss1 | |- ( ph -> dom dom H C_ ( Base ` C ) ) |
| 36 | 32 35 | fssresd | |- ( ph -> ( ( 1st ` F ) |` dom dom H ) : dom dom H --> ( Base ` D ) ) |
| 37 | 26 | simpld | |- ( ph -> C e. Cat ) |
| 38 | 23 28 37 34 35 | rescbas | |- ( ph -> dom dom H = ( Base ` ( C |`cat H ) ) ) |
| 39 | 38 | feq2d | |- ( ph -> ( ( ( 1st ` F ) |` dom dom H ) : dom dom H --> ( Base ` D ) <-> ( ( 1st ` F ) |` dom dom H ) : ( Base ` ( C |`cat H ) ) --> ( Base ` D ) ) ) |
| 40 | 36 39 | mpbid | |- ( ph -> ( ( 1st ` F ) |` dom dom H ) : ( Base ` ( C |`cat H ) ) --> ( Base ` D ) ) |
| 41 | fvex | |- ( ( 2nd ` F ) ` z ) e. _V |
|
| 42 | 41 | resex | |- ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) e. _V |
| 43 | eqid | |- ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) = ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) |
|
| 44 | 42 43 | fnmpti | |- ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) Fn dom H |
| 45 | 12 | eqcomd | |- ( ph -> ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) = ( 2nd ` ( F |`f H ) ) ) |
| 46 | fndm | |- ( H Fn ( dom dom H X. dom dom H ) -> dom H = ( dom dom H X. dom dom H ) ) |
|
| 47 | 34 46 | syl | |- ( ph -> dom H = ( dom dom H X. dom dom H ) ) |
| 48 | 38 | sqxpeqd | |- ( ph -> ( dom dom H X. dom dom H ) = ( ( Base ` ( C |`cat H ) ) X. ( Base ` ( C |`cat H ) ) ) ) |
| 49 | 47 48 | eqtrd | |- ( ph -> dom H = ( ( Base ` ( C |`cat H ) ) X. ( Base ` ( C |`cat H ) ) ) ) |
| 50 | 45 49 | fneq12d | |- ( ph -> ( ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) Fn dom H <-> ( 2nd ` ( F |`f H ) ) Fn ( ( Base ` ( C |`cat H ) ) X. ( Base ` ( C |`cat H ) ) ) ) ) |
| 51 | 44 50 | mpbii | |- ( ph -> ( 2nd ` ( F |`f H ) ) Fn ( ( Base ` ( C |`cat H ) ) X. ( Base ` ( C |`cat H ) ) ) ) |
| 52 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 53 | 31 | adantr | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 54 | 35 | adantr | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> dom dom H C_ ( Base ` C ) ) |
| 55 | simprl | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> x e. ( Base ` ( C |`cat H ) ) ) |
|
| 56 | 38 | adantr | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> dom dom H = ( Base ` ( C |`cat H ) ) ) |
| 57 | 55 56 | eleqtrrd | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> x e. dom dom H ) |
| 58 | 54 57 | sseldd | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> x e. ( Base ` C ) ) |
| 59 | simprr | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> y e. ( Base ` ( C |`cat H ) ) ) |
|
| 60 | 59 56 | eleqtrrd | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> y e. dom dom H ) |
| 61 | 54 60 | sseldd | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> y e. ( Base ` C ) ) |
| 62 | 28 52 18 53 58 61 | funcf2 | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> ( x ( 2nd ` F ) y ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) |
| 63 | 2 | adantr | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> H e. ( Subcat ` C ) ) |
| 64 | 34 | adantr | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> H Fn ( dom dom H X. dom dom H ) ) |
| 65 | 63 64 52 57 60 | subcss2 | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> ( x H y ) C_ ( x ( Hom ` C ) y ) ) |
| 66 | 62 65 | fssresd | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> ( ( x ( 2nd ` F ) y ) |` ( x H y ) ) : ( x H y ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) |
| 67 | 1 | adantr | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> F e. ( C Func D ) ) |
| 68 | 67 63 64 57 60 | resf2nd | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> ( x ( 2nd ` ( F |`f H ) ) y ) = ( ( x ( 2nd ` F ) y ) |` ( x H y ) ) ) |
| 69 | 68 | feq1d | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> ( ( x ( 2nd ` ( F |`f H ) ) y ) : ( x H y ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) <-> ( ( x ( 2nd ` F ) y ) |` ( x H y ) ) : ( x H y ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) ) |
| 70 | 66 69 | mpbird | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> ( x ( 2nd ` ( F |`f H ) ) y ) : ( x H y ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) |
| 71 | 23 28 37 34 35 | reschom | |- ( ph -> H = ( Hom ` ( C |`cat H ) ) ) |
| 72 | 71 | adantr | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> H = ( Hom ` ( C |`cat H ) ) ) |
| 73 | 72 | oveqd | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> ( x H y ) = ( x ( Hom ` ( C |`cat H ) ) y ) ) |
| 74 | 57 | fvresd | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> ( ( ( 1st ` F ) |` dom dom H ) ` x ) = ( ( 1st ` F ) ` x ) ) |
| 75 | 60 | fvresd | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> ( ( ( 1st ` F ) |` dom dom H ) ` y ) = ( ( 1st ` F ) ` y ) ) |
| 76 | 74 75 | oveq12d | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> ( ( ( ( 1st ` F ) |` dom dom H ) ` x ) ( Hom ` D ) ( ( ( 1st ` F ) |` dom dom H ) ` y ) ) = ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) |
| 77 | 76 | eqcomd | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) = ( ( ( ( 1st ` F ) |` dom dom H ) ` x ) ( Hom ` D ) ( ( ( 1st ` F ) |` dom dom H ) ` y ) ) ) |
| 78 | 73 77 | feq23d | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> ( ( x ( 2nd ` ( F |`f H ) ) y ) : ( x H y ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) <-> ( x ( 2nd ` ( F |`f H ) ) y ) : ( x ( Hom ` ( C |`cat H ) ) y ) --> ( ( ( ( 1st ` F ) |` dom dom H ) ` x ) ( Hom ` D ) ( ( ( 1st ` F ) |` dom dom H ) ` y ) ) ) ) |
| 79 | 70 78 | mpbid | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> ( x ( 2nd ` ( F |`f H ) ) y ) : ( x ( Hom ` ( C |`cat H ) ) y ) --> ( ( ( ( 1st ` F ) |` dom dom H ) ` x ) ( Hom ` D ) ( ( ( 1st ` F ) |` dom dom H ) ` y ) ) ) |
| 80 | 1 | adantr | |- ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> F e. ( C Func D ) ) |
| 81 | 2 | adantr | |- ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> H e. ( Subcat ` C ) ) |
| 82 | 34 | adantr | |- ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> H Fn ( dom dom H X. dom dom H ) ) |
| 83 | 38 | eleq2d | |- ( ph -> ( x e. dom dom H <-> x e. ( Base ` ( C |`cat H ) ) ) ) |
| 84 | 83 | biimpar | |- ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> x e. dom dom H ) |
| 85 | 80 81 82 84 84 | resf2nd | |- ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> ( x ( 2nd ` ( F |`f H ) ) x ) = ( ( x ( 2nd ` F ) x ) |` ( x H x ) ) ) |
| 86 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 87 | 23 81 82 86 84 | subcid | |- ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> ( ( Id ` C ) ` x ) = ( ( Id ` ( C |`cat H ) ) ` x ) ) |
| 88 | 87 | eqcomd | |- ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> ( ( Id ` ( C |`cat H ) ) ` x ) = ( ( Id ` C ) ` x ) ) |
| 89 | 85 88 | fveq12d | |- ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> ( ( x ( 2nd ` ( F |`f H ) ) x ) ` ( ( Id ` ( C |`cat H ) ) ` x ) ) = ( ( ( x ( 2nd ` F ) x ) |` ( x H x ) ) ` ( ( Id ` C ) ` x ) ) ) |
| 90 | 31 | adantr | |- ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 91 | 38 35 | eqsstrrd | |- ( ph -> ( Base ` ( C |`cat H ) ) C_ ( Base ` C ) ) |
| 92 | 91 | sselda | |- ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> x e. ( Base ` C ) ) |
| 93 | 28 86 20 90 92 | funcid | |- ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> ( ( x ( 2nd ` F ) x ) ` ( ( Id ` C ) ` x ) ) = ( ( Id ` D ) ` ( ( 1st ` F ) ` x ) ) ) |
| 94 | 81 82 84 86 | subcidcl | |- ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> ( ( Id ` C ) ` x ) e. ( x H x ) ) |
| 95 | 94 | fvresd | |- ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> ( ( ( x ( 2nd ` F ) x ) |` ( x H x ) ) ` ( ( Id ` C ) ` x ) ) = ( ( x ( 2nd ` F ) x ) ` ( ( Id ` C ) ` x ) ) ) |
| 96 | 84 | fvresd | |- ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> ( ( ( 1st ` F ) |` dom dom H ) ` x ) = ( ( 1st ` F ) ` x ) ) |
| 97 | 96 | fveq2d | |- ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> ( ( Id ` D ) ` ( ( ( 1st ` F ) |` dom dom H ) ` x ) ) = ( ( Id ` D ) ` ( ( 1st ` F ) ` x ) ) ) |
| 98 | 93 95 97 | 3eqtr4d | |- ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> ( ( ( x ( 2nd ` F ) x ) |` ( x H x ) ) ` ( ( Id ` C ) ` x ) ) = ( ( Id ` D ) ` ( ( ( 1st ` F ) |` dom dom H ) ` x ) ) ) |
| 99 | 89 98 | eqtrd | |- ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> ( ( x ( 2nd ` ( F |`f H ) ) x ) ` ( ( Id ` ( C |`cat H ) ) ` x ) ) = ( ( Id ` D ) ` ( ( ( 1st ` F ) |` dom dom H ) ` x ) ) ) |
| 100 | 2 | 3ad2ant1 | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> H e. ( Subcat ` C ) ) |
| 101 | 34 | 3ad2ant1 | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> H Fn ( dom dom H X. dom dom H ) ) |
| 102 | simp21 | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> x e. ( Base ` ( C |`cat H ) ) ) |
|
| 103 | 38 | 3ad2ant1 | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> dom dom H = ( Base ` ( C |`cat H ) ) ) |
| 104 | 102 103 | eleqtrrd | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> x e. dom dom H ) |
| 105 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 106 | simp22 | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> y e. ( Base ` ( C |`cat H ) ) ) |
|
| 107 | 106 103 | eleqtrrd | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> y e. dom dom H ) |
| 108 | simp23 | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> z e. ( Base ` ( C |`cat H ) ) ) |
|
| 109 | 108 103 | eleqtrrd | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> z e. dom dom H ) |
| 110 | simp3l | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> f e. ( x ( Hom ` ( C |`cat H ) ) y ) ) |
|
| 111 | 71 | 3ad2ant1 | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> H = ( Hom ` ( C |`cat H ) ) ) |
| 112 | 111 | oveqd | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( x H y ) = ( x ( Hom ` ( C |`cat H ) ) y ) ) |
| 113 | 110 112 | eleqtrrd | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> f e. ( x H y ) ) |
| 114 | simp3r | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) |
|
| 115 | 111 | oveqd | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( y H z ) = ( y ( Hom ` ( C |`cat H ) ) z ) ) |
| 116 | 114 115 | eleqtrrd | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> g e. ( y H z ) ) |
| 117 | 100 101 104 105 107 109 113 116 | subccocl | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x H z ) ) |
| 118 | 117 | fvresd | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( ( ( x ( 2nd ` F ) z ) |` ( x H z ) ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( x ( 2nd ` F ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) |
| 119 | 31 | 3ad2ant1 | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 120 | 35 | 3ad2ant1 | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> dom dom H C_ ( Base ` C ) ) |
| 121 | 120 104 | sseldd | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> x e. ( Base ` C ) ) |
| 122 | 120 107 | sseldd | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> y e. ( Base ` C ) ) |
| 123 | 120 109 | sseldd | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> z e. ( Base ` C ) ) |
| 124 | 100 101 52 104 107 | subcss2 | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( x H y ) C_ ( x ( Hom ` C ) y ) ) |
| 125 | 124 113 | sseldd | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> f e. ( x ( Hom ` C ) y ) ) |
| 126 | 100 101 52 107 109 | subcss2 | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( y H z ) C_ ( y ( Hom ` C ) z ) ) |
| 127 | 126 116 | sseldd | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> g e. ( y ( Hom ` C ) z ) ) |
| 128 | 28 52 105 22 119 121 122 123 125 127 | funcco | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( ( x ( 2nd ` F ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( y ( 2nd ` F ) z ) ` g ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) ) |
| 129 | 118 128 | eqtrd | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( ( ( x ( 2nd ` F ) z ) |` ( x H z ) ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( y ( 2nd ` F ) z ) ` g ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) ) |
| 130 | 1 | 3ad2ant1 | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> F e. ( C Func D ) ) |
| 131 | 130 100 101 104 109 | resf2nd | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( x ( 2nd ` ( F |`f H ) ) z ) = ( ( x ( 2nd ` F ) z ) |` ( x H z ) ) ) |
| 132 | 23 28 37 34 35 105 | rescco | |- ( ph -> ( comp ` C ) = ( comp ` ( C |`cat H ) ) ) |
| 133 | 132 | 3ad2ant1 | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( comp ` C ) = ( comp ` ( C |`cat H ) ) ) |
| 134 | 133 | eqcomd | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( comp ` ( C |`cat H ) ) = ( comp ` C ) ) |
| 135 | 134 | oveqd | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( <. x , y >. ( comp ` ( C |`cat H ) ) z ) = ( <. x , y >. ( comp ` C ) z ) ) |
| 136 | 135 | oveqd | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( g ( <. x , y >. ( comp ` ( C |`cat H ) ) z ) f ) = ( g ( <. x , y >. ( comp ` C ) z ) f ) ) |
| 137 | 131 136 | fveq12d | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( ( x ( 2nd ` ( F |`f H ) ) z ) ` ( g ( <. x , y >. ( comp ` ( C |`cat H ) ) z ) f ) ) = ( ( ( x ( 2nd ` F ) z ) |` ( x H z ) ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) |
| 138 | 104 | fvresd | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( ( ( 1st ` F ) |` dom dom H ) ` x ) = ( ( 1st ` F ) ` x ) ) |
| 139 | 107 | fvresd | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( ( ( 1st ` F ) |` dom dom H ) ` y ) = ( ( 1st ` F ) ` y ) ) |
| 140 | 138 139 | opeq12d | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> <. ( ( ( 1st ` F ) |` dom dom H ) ` x ) , ( ( ( 1st ` F ) |` dom dom H ) ` y ) >. = <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ) |
| 141 | 109 | fvresd | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( ( ( 1st ` F ) |` dom dom H ) ` z ) = ( ( 1st ` F ) ` z ) ) |
| 142 | 140 141 | oveq12d | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( <. ( ( ( 1st ` F ) |` dom dom H ) ` x ) , ( ( ( 1st ` F ) |` dom dom H ) ` y ) >. ( comp ` D ) ( ( ( 1st ` F ) |` dom dom H ) ` z ) ) = ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ) |
| 143 | 130 100 101 107 109 | resf2nd | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( y ( 2nd ` ( F |`f H ) ) z ) = ( ( y ( 2nd ` F ) z ) |` ( y H z ) ) ) |
| 144 | 143 | fveq1d | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( ( y ( 2nd ` ( F |`f H ) ) z ) ` g ) = ( ( ( y ( 2nd ` F ) z ) |` ( y H z ) ) ` g ) ) |
| 145 | 116 | fvresd | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( ( ( y ( 2nd ` F ) z ) |` ( y H z ) ) ` g ) = ( ( y ( 2nd ` F ) z ) ` g ) ) |
| 146 | 144 145 | eqtrd | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( ( y ( 2nd ` ( F |`f H ) ) z ) ` g ) = ( ( y ( 2nd ` F ) z ) ` g ) ) |
| 147 | 130 100 101 104 107 | resf2nd | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( x ( 2nd ` ( F |`f H ) ) y ) = ( ( x ( 2nd ` F ) y ) |` ( x H y ) ) ) |
| 148 | 147 | fveq1d | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( ( x ( 2nd ` ( F |`f H ) ) y ) ` f ) = ( ( ( x ( 2nd ` F ) y ) |` ( x H y ) ) ` f ) ) |
| 149 | 113 | fvresd | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( ( ( x ( 2nd ` F ) y ) |` ( x H y ) ) ` f ) = ( ( x ( 2nd ` F ) y ) ` f ) ) |
| 150 | 148 149 | eqtrd | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( ( x ( 2nd ` ( F |`f H ) ) y ) ` f ) = ( ( x ( 2nd ` F ) y ) ` f ) ) |
| 151 | 142 146 150 | oveq123d | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( ( ( y ( 2nd ` ( F |`f H ) ) z ) ` g ) ( <. ( ( ( 1st ` F ) |` dom dom H ) ` x ) , ( ( ( 1st ` F ) |` dom dom H ) ` y ) >. ( comp ` D ) ( ( ( 1st ` F ) |` dom dom H ) ` z ) ) ( ( x ( 2nd ` ( F |`f H ) ) y ) ` f ) ) = ( ( ( y ( 2nd ` F ) z ) ` g ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) ) |
| 152 | 129 137 151 | 3eqtr4d | |- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( ( x ( 2nd ` ( F |`f H ) ) z ) ` ( g ( <. x , y >. ( comp ` ( C |`cat H ) ) z ) f ) ) = ( ( ( y ( 2nd ` ( F |`f H ) ) z ) ` g ) ( <. ( ( ( 1st ` F ) |` dom dom H ) ` x ) , ( ( ( 1st ` F ) |` dom dom H ) ` y ) >. ( comp ` D ) ( ( ( 1st ` F ) |` dom dom H ) ` z ) ) ( ( x ( 2nd ` ( F |`f H ) ) y ) ` f ) ) ) |
| 153 | 15 16 17 18 19 20 21 22 24 27 40 51 79 99 152 | isfuncd | |- ( ph -> ( ( 1st ` F ) |` dom dom H ) ( ( C |`cat H ) Func D ) ( 2nd ` ( F |`f H ) ) ) |
| 154 | df-br | |- ( ( ( 1st ` F ) |` dom dom H ) ( ( C |`cat H ) Func D ) ( 2nd ` ( F |`f H ) ) <-> <. ( ( 1st ` F ) |` dom dom H ) , ( 2nd ` ( F |`f H ) ) >. e. ( ( C |`cat H ) Func D ) ) |
|
| 155 | 153 154 | sylib | |- ( ph -> <. ( ( 1st ` F ) |` dom dom H ) , ( 2nd ` ( F |`f H ) ) >. e. ( ( C |`cat H ) Func D ) ) |
| 156 | 14 155 | eqeltrd | |- ( ph -> ( F |`f H ) e. ( ( C |`cat H ) Func D ) ) |