This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hom-sets of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rescbas.d | |- D = ( C |`cat H ) |
|
| rescbas.b | |- B = ( Base ` C ) |
||
| rescbas.c | |- ( ph -> C e. V ) |
||
| rescbas.h | |- ( ph -> H Fn ( S X. S ) ) |
||
| rescbas.s | |- ( ph -> S C_ B ) |
||
| Assertion | reschom | |- ( ph -> H = ( Hom ` D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rescbas.d | |- D = ( C |`cat H ) |
|
| 2 | rescbas.b | |- B = ( Base ` C ) |
|
| 3 | rescbas.c | |- ( ph -> C e. V ) |
|
| 4 | rescbas.h | |- ( ph -> H Fn ( S X. S ) ) |
|
| 5 | rescbas.s | |- ( ph -> S C_ B ) |
|
| 6 | ovex | |- ( C |`s S ) e. _V |
|
| 7 | 2 | fvexi | |- B e. _V |
| 8 | 7 | ssex | |- ( S C_ B -> S e. _V ) |
| 9 | 5 8 | syl | |- ( ph -> S e. _V ) |
| 10 | 9 9 | xpexd | |- ( ph -> ( S X. S ) e. _V ) |
| 11 | fnex | |- ( ( H Fn ( S X. S ) /\ ( S X. S ) e. _V ) -> H e. _V ) |
|
| 12 | 4 10 11 | syl2anc | |- ( ph -> H e. _V ) |
| 13 | homid | |- Hom = Slot ( Hom ` ndx ) |
|
| 14 | 13 | setsid | |- ( ( ( C |`s S ) e. _V /\ H e. _V ) -> H = ( Hom ` ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) ) ) |
| 15 | 6 12 14 | sylancr | |- ( ph -> H = ( Hom ` ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) ) ) |
| 16 | 1 3 9 4 | rescval2 | |- ( ph -> D = ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) ) |
| 17 | 16 | fveq2d | |- ( ph -> ( Hom ` D ) = ( Hom ` ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) ) ) |
| 18 | 15 17 | eqtr4d | |- ( ph -> H = ( Hom ` D ) ) |