This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity in a subcategory is the same as the original category. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subccat.1 | |- D = ( C |`cat J ) |
|
| subccat.j | |- ( ph -> J e. ( Subcat ` C ) ) |
||
| subccatid.1 | |- ( ph -> J Fn ( S X. S ) ) |
||
| subccatid.2 | |- .1. = ( Id ` C ) |
||
| subcid.x | |- ( ph -> X e. S ) |
||
| Assertion | subcid | |- ( ph -> ( .1. ` X ) = ( ( Id ` D ) ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subccat.1 | |- D = ( C |`cat J ) |
|
| 2 | subccat.j | |- ( ph -> J e. ( Subcat ` C ) ) |
|
| 3 | subccatid.1 | |- ( ph -> J Fn ( S X. S ) ) |
|
| 4 | subccatid.2 | |- .1. = ( Id ` C ) |
|
| 5 | subcid.x | |- ( ph -> X e. S ) |
|
| 6 | 1 2 3 4 | subccatid | |- ( ph -> ( D e. Cat /\ ( Id ` D ) = ( x e. S |-> ( .1. ` x ) ) ) ) |
| 7 | 6 | simprd | |- ( ph -> ( Id ` D ) = ( x e. S |-> ( .1. ` x ) ) ) |
| 8 | simpr | |- ( ( ph /\ x = X ) -> x = X ) |
|
| 9 | 8 | fveq2d | |- ( ( ph /\ x = X ) -> ( .1. ` x ) = ( .1. ` X ) ) |
| 10 | fvexd | |- ( ph -> ( .1. ` X ) e. _V ) |
|
| 11 | 7 9 5 10 | fvmptd | |- ( ph -> ( ( Id ` D ) ` X ) = ( .1. ` X ) ) |
| 12 | 11 | eqcomd | |- ( ph -> ( .1. ` X ) = ( ( Id ` D ) ` X ) ) |