This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Base set of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017) (Proof shortened by AV, 18-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rescbas.d | |- D = ( C |`cat H ) |
|
| rescbas.b | |- B = ( Base ` C ) |
||
| rescbas.c | |- ( ph -> C e. V ) |
||
| rescbas.h | |- ( ph -> H Fn ( S X. S ) ) |
||
| rescbas.s | |- ( ph -> S C_ B ) |
||
| Assertion | rescbas | |- ( ph -> S = ( Base ` D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rescbas.d | |- D = ( C |`cat H ) |
|
| 2 | rescbas.b | |- B = ( Base ` C ) |
|
| 3 | rescbas.c | |- ( ph -> C e. V ) |
|
| 4 | rescbas.h | |- ( ph -> H Fn ( S X. S ) ) |
|
| 5 | rescbas.s | |- ( ph -> S C_ B ) |
|
| 6 | baseid | |- Base = Slot ( Base ` ndx ) |
|
| 7 | slotsbhcdif | |- ( ( Base ` ndx ) =/= ( Hom ` ndx ) /\ ( Base ` ndx ) =/= ( comp ` ndx ) /\ ( Hom ` ndx ) =/= ( comp ` ndx ) ) |
|
| 8 | 7 | simp1i | |- ( Base ` ndx ) =/= ( Hom ` ndx ) |
| 9 | 6 8 | setsnid | |- ( Base ` ( C |`s S ) ) = ( Base ` ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) ) |
| 10 | eqid | |- ( C |`s S ) = ( C |`s S ) |
|
| 11 | 10 2 | ressbas2 | |- ( S C_ B -> S = ( Base ` ( C |`s S ) ) ) |
| 12 | 5 11 | syl | |- ( ph -> S = ( Base ` ( C |`s S ) ) ) |
| 13 | 2 | fvexi | |- B e. _V |
| 14 | 13 | ssex | |- ( S C_ B -> S e. _V ) |
| 15 | 5 14 | syl | |- ( ph -> S e. _V ) |
| 16 | 1 3 15 4 | rescval2 | |- ( ph -> D = ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) ) |
| 17 | 16 | fveq2d | |- ( ph -> ( Base ` D ) = ( Base ` ( ( C |`s S ) sSet <. ( Hom ` ndx ) , H >. ) ) ) |
| 18 | 9 12 17 | 3eqtr4a | |- ( ph -> S = ( Base ` D ) ) |