This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the functor restriction operator on morphisms. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resf1st.f | |- ( ph -> F e. V ) |
|
| resf1st.h | |- ( ph -> H e. W ) |
||
| resf1st.s | |- ( ph -> H Fn ( S X. S ) ) |
||
| resf2nd.x | |- ( ph -> X e. S ) |
||
| resf2nd.y | |- ( ph -> Y e. S ) |
||
| Assertion | resf2nd | |- ( ph -> ( X ( 2nd ` ( F |`f H ) ) Y ) = ( ( X ( 2nd ` F ) Y ) |` ( X H Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resf1st.f | |- ( ph -> F e. V ) |
|
| 2 | resf1st.h | |- ( ph -> H e. W ) |
|
| 3 | resf1st.s | |- ( ph -> H Fn ( S X. S ) ) |
|
| 4 | resf2nd.x | |- ( ph -> X e. S ) |
|
| 5 | resf2nd.y | |- ( ph -> Y e. S ) |
|
| 6 | df-ov | |- ( X ( 2nd ` ( F |`f H ) ) Y ) = ( ( 2nd ` ( F |`f H ) ) ` <. X , Y >. ) |
|
| 7 | 1 2 | resfval | |- ( ph -> ( F |`f H ) = <. ( ( 1st ` F ) |` dom dom H ) , ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) >. ) |
| 8 | 7 | fveq2d | |- ( ph -> ( 2nd ` ( F |`f H ) ) = ( 2nd ` <. ( ( 1st ` F ) |` dom dom H ) , ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) >. ) ) |
| 9 | fvex | |- ( 1st ` F ) e. _V |
|
| 10 | 9 | resex | |- ( ( 1st ` F ) |` dom dom H ) e. _V |
| 11 | dmexg | |- ( H e. W -> dom H e. _V ) |
|
| 12 | mptexg | |- ( dom H e. _V -> ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) e. _V ) |
|
| 13 | 2 11 12 | 3syl | |- ( ph -> ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) e. _V ) |
| 14 | op2ndg | |- ( ( ( ( 1st ` F ) |` dom dom H ) e. _V /\ ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) e. _V ) -> ( 2nd ` <. ( ( 1st ` F ) |` dom dom H ) , ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) >. ) = ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) ) |
|
| 15 | 10 13 14 | sylancr | |- ( ph -> ( 2nd ` <. ( ( 1st ` F ) |` dom dom H ) , ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) >. ) = ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) ) |
| 16 | 8 15 | eqtrd | |- ( ph -> ( 2nd ` ( F |`f H ) ) = ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) ) |
| 17 | simpr | |- ( ( ph /\ z = <. X , Y >. ) -> z = <. X , Y >. ) |
|
| 18 | 17 | fveq2d | |- ( ( ph /\ z = <. X , Y >. ) -> ( ( 2nd ` F ) ` z ) = ( ( 2nd ` F ) ` <. X , Y >. ) ) |
| 19 | df-ov | |- ( X ( 2nd ` F ) Y ) = ( ( 2nd ` F ) ` <. X , Y >. ) |
|
| 20 | 18 19 | eqtr4di | |- ( ( ph /\ z = <. X , Y >. ) -> ( ( 2nd ` F ) ` z ) = ( X ( 2nd ` F ) Y ) ) |
| 21 | 17 | fveq2d | |- ( ( ph /\ z = <. X , Y >. ) -> ( H ` z ) = ( H ` <. X , Y >. ) ) |
| 22 | df-ov | |- ( X H Y ) = ( H ` <. X , Y >. ) |
|
| 23 | 21 22 | eqtr4di | |- ( ( ph /\ z = <. X , Y >. ) -> ( H ` z ) = ( X H Y ) ) |
| 24 | 20 23 | reseq12d | |- ( ( ph /\ z = <. X , Y >. ) -> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) = ( ( X ( 2nd ` F ) Y ) |` ( X H Y ) ) ) |
| 25 | 4 5 | opelxpd | |- ( ph -> <. X , Y >. e. ( S X. S ) ) |
| 26 | 3 | fndmd | |- ( ph -> dom H = ( S X. S ) ) |
| 27 | 25 26 | eleqtrrd | |- ( ph -> <. X , Y >. e. dom H ) |
| 28 | ovex | |- ( X ( 2nd ` F ) Y ) e. _V |
|
| 29 | 28 | resex | |- ( ( X ( 2nd ` F ) Y ) |` ( X H Y ) ) e. _V |
| 30 | 29 | a1i | |- ( ph -> ( ( X ( 2nd ` F ) Y ) |` ( X H Y ) ) e. _V ) |
| 31 | 16 24 27 30 | fvmptd | |- ( ph -> ( ( 2nd ` ( F |`f H ) ) ` <. X , Y >. ) = ( ( X ( 2nd ` F ) Y ) |` ( X H Y ) ) ) |
| 32 | 6 31 | eqtrid | |- ( ph -> ( X ( 2nd ` ( F |`f H ) ) Y ) = ( ( X ( 2nd ` F ) Y ) |` ( X H Y ) ) ) |