This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The morphisms of a subcategory are a subset of the morphisms of the original. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subcss1.1 | |- ( ph -> J e. ( Subcat ` C ) ) |
|
| subcss1.2 | |- ( ph -> J Fn ( S X. S ) ) |
||
| subcss2.h | |- H = ( Hom ` C ) |
||
| subcss2.x | |- ( ph -> X e. S ) |
||
| subcss2.y | |- ( ph -> Y e. S ) |
||
| Assertion | subcss2 | |- ( ph -> ( X J Y ) C_ ( X H Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subcss1.1 | |- ( ph -> J e. ( Subcat ` C ) ) |
|
| 2 | subcss1.2 | |- ( ph -> J Fn ( S X. S ) ) |
|
| 3 | subcss2.h | |- H = ( Hom ` C ) |
|
| 4 | subcss2.x | |- ( ph -> X e. S ) |
|
| 5 | subcss2.y | |- ( ph -> Y e. S ) |
|
| 6 | eqid | |- ( Homf ` C ) = ( Homf ` C ) |
|
| 7 | 1 6 | subcssc | |- ( ph -> J C_cat ( Homf ` C ) ) |
| 8 | 2 7 4 5 | ssc2 | |- ( ph -> ( X J Y ) C_ ( X ( Homf ` C ) Y ) ) |
| 9 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 10 | 1 2 9 | subcss1 | |- ( ph -> S C_ ( Base ` C ) ) |
| 11 | 10 4 | sseldd | |- ( ph -> X e. ( Base ` C ) ) |
| 12 | 10 5 | sseldd | |- ( ph -> Y e. ( Base ` C ) ) |
| 13 | 6 9 3 11 12 | homfval | |- ( ph -> ( X ( Homf ` C ) Y ) = ( X H Y ) ) |
| 14 | 8 13 | sseqtrd | |- ( ph -> ( X J Y ) C_ ( X H Y ) ) |