This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity of the original category is contained in each subcategory. (Contributed by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subcidcl.j | |- ( ph -> J e. ( Subcat ` C ) ) |
|
| subcidcl.2 | |- ( ph -> J Fn ( S X. S ) ) |
||
| subcidcl.x | |- ( ph -> X e. S ) |
||
| subcidcl.1 | |- .1. = ( Id ` C ) |
||
| Assertion | subcidcl | |- ( ph -> ( .1. ` X ) e. ( X J X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subcidcl.j | |- ( ph -> J e. ( Subcat ` C ) ) |
|
| 2 | subcidcl.2 | |- ( ph -> J Fn ( S X. S ) ) |
|
| 3 | subcidcl.x | |- ( ph -> X e. S ) |
|
| 4 | subcidcl.1 | |- .1. = ( Id ` C ) |
|
| 5 | fveq2 | |- ( x = X -> ( .1. ` x ) = ( .1. ` X ) ) |
|
| 6 | id | |- ( x = X -> x = X ) |
|
| 7 | 6 6 | oveq12d | |- ( x = X -> ( x J x ) = ( X J X ) ) |
| 8 | 5 7 | eleq12d | |- ( x = X -> ( ( .1. ` x ) e. ( x J x ) <-> ( .1. ` X ) e. ( X J X ) ) ) |
| 9 | eqid | |- ( Homf ` C ) = ( Homf ` C ) |
|
| 10 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 11 | subcrcl | |- ( J e. ( Subcat ` C ) -> C e. Cat ) |
|
| 12 | 1 11 | syl | |- ( ph -> C e. Cat ) |
| 13 | 9 4 10 12 2 | issubc2 | |- ( ph -> ( J e. ( Subcat ` C ) <-> ( J C_cat ( Homf ` C ) /\ A. x e. S ( ( .1. ` x ) e. ( x J x ) /\ A. y e. S A. z e. S A. f e. ( x J y ) A. g e. ( y J z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x J z ) ) ) ) ) |
| 14 | 1 13 | mpbid | |- ( ph -> ( J C_cat ( Homf ` C ) /\ A. x e. S ( ( .1. ` x ) e. ( x J x ) /\ A. y e. S A. z e. S A. f e. ( x J y ) A. g e. ( y J z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x J z ) ) ) ) |
| 15 | simpl | |- ( ( ( .1. ` x ) e. ( x J x ) /\ A. y e. S A. z e. S A. f e. ( x J y ) A. g e. ( y J z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x J z ) ) -> ( .1. ` x ) e. ( x J x ) ) |
|
| 16 | 15 | ralimi | |- ( A. x e. S ( ( .1. ` x ) e. ( x J x ) /\ A. y e. S A. z e. S A. f e. ( x J y ) A. g e. ( y J z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x J z ) ) -> A. x e. S ( .1. ` x ) e. ( x J x ) ) |
| 17 | 14 16 | simpl2im | |- ( ph -> A. x e. S ( .1. ` x ) e. ( x J x ) ) |
| 18 | 8 17 3 | rspcdva | |- ( ph -> ( .1. ` X ) e. ( X J X ) ) |