This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Product of two divisor sums. (This is also the main part of the proof that " sum_ k || N F ( k ) is a multiplicative function if F is".) (Contributed by Mario Carneiro, 2-Jul-2015) Avoid ax-mulf . (Revised by GG, 18-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mpodvdsmulf1o.1 | |- ( ph -> M e. NN ) |
|
| mpodvdsmulf1o.2 | |- ( ph -> N e. NN ) |
||
| mpodvdsmulf1o.3 | |- ( ph -> ( M gcd N ) = 1 ) |
||
| mpodvdsmulf1o.x | |- X = { x e. NN | x || M } |
||
| mpodvdsmulf1o.y | |- Y = { x e. NN | x || N } |
||
| mpodvdsmulf1o.z | |- Z = { x e. NN | x || ( M x. N ) } |
||
| fsumdvdsmul.4 | |- ( ( ph /\ j e. X ) -> A e. CC ) |
||
| fsumdvdsmul.5 | |- ( ( ph /\ k e. Y ) -> B e. CC ) |
||
| fsumdvdsmul.6 | |- ( ( ph /\ ( j e. X /\ k e. Y ) ) -> ( A x. B ) = D ) |
||
| fsumdvdsmul.7 | |- ( i = ( j x. k ) -> C = D ) |
||
| Assertion | fsumdvdsmul | |- ( ph -> ( sum_ j e. X A x. sum_ k e. Y B ) = sum_ i e. Z C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpodvdsmulf1o.1 | |- ( ph -> M e. NN ) |
|
| 2 | mpodvdsmulf1o.2 | |- ( ph -> N e. NN ) |
|
| 3 | mpodvdsmulf1o.3 | |- ( ph -> ( M gcd N ) = 1 ) |
|
| 4 | mpodvdsmulf1o.x | |- X = { x e. NN | x || M } |
|
| 5 | mpodvdsmulf1o.y | |- Y = { x e. NN | x || N } |
|
| 6 | mpodvdsmulf1o.z | |- Z = { x e. NN | x || ( M x. N ) } |
|
| 7 | fsumdvdsmul.4 | |- ( ( ph /\ j e. X ) -> A e. CC ) |
|
| 8 | fsumdvdsmul.5 | |- ( ( ph /\ k e. Y ) -> B e. CC ) |
|
| 9 | fsumdvdsmul.6 | |- ( ( ph /\ ( j e. X /\ k e. Y ) ) -> ( A x. B ) = D ) |
|
| 10 | fsumdvdsmul.7 | |- ( i = ( j x. k ) -> C = D ) |
|
| 11 | fzfid | |- ( ph -> ( 1 ... M ) e. Fin ) |
|
| 12 | dvdsssfz1 | |- ( M e. NN -> { x e. NN | x || M } C_ ( 1 ... M ) ) |
|
| 13 | 1 12 | syl | |- ( ph -> { x e. NN | x || M } C_ ( 1 ... M ) ) |
| 14 | 4 13 | eqsstrid | |- ( ph -> X C_ ( 1 ... M ) ) |
| 15 | 11 14 | ssfid | |- ( ph -> X e. Fin ) |
| 16 | fzfid | |- ( ph -> ( 1 ... N ) e. Fin ) |
|
| 17 | dvdsssfz1 | |- ( N e. NN -> { x e. NN | x || N } C_ ( 1 ... N ) ) |
|
| 18 | 2 17 | syl | |- ( ph -> { x e. NN | x || N } C_ ( 1 ... N ) ) |
| 19 | 5 18 | eqsstrid | |- ( ph -> Y C_ ( 1 ... N ) ) |
| 20 | 16 19 | ssfid | |- ( ph -> Y e. Fin ) |
| 21 | 20 8 | fsumcl | |- ( ph -> sum_ k e. Y B e. CC ) |
| 22 | 15 21 7 | fsummulc1 | |- ( ph -> ( sum_ j e. X A x. sum_ k e. Y B ) = sum_ j e. X ( A x. sum_ k e. Y B ) ) |
| 23 | 20 | adantr | |- ( ( ph /\ j e. X ) -> Y e. Fin ) |
| 24 | 8 | adantlr | |- ( ( ( ph /\ j e. X ) /\ k e. Y ) -> B e. CC ) |
| 25 | 23 7 24 | fsummulc2 | |- ( ( ph /\ j e. X ) -> ( A x. sum_ k e. Y B ) = sum_ k e. Y ( A x. B ) ) |
| 26 | 9 | anassrs | |- ( ( ( ph /\ j e. X ) /\ k e. Y ) -> ( A x. B ) = D ) |
| 27 | 26 | sumeq2dv | |- ( ( ph /\ j e. X ) -> sum_ k e. Y ( A x. B ) = sum_ k e. Y D ) |
| 28 | 25 27 | eqtrd | |- ( ( ph /\ j e. X ) -> ( A x. sum_ k e. Y B ) = sum_ k e. Y D ) |
| 29 | 28 | sumeq2dv | |- ( ph -> sum_ j e. X ( A x. sum_ k e. Y B ) = sum_ j e. X sum_ k e. Y D ) |
| 30 | elxpi | |- ( z e. ( X X. Y ) -> E. u E. v ( z = <. u , v >. /\ ( u e. X /\ v e. Y ) ) ) |
|
| 31 | fveq2 | |- ( <. u , v >. = z -> ( ( x e. CC , y e. CC |-> ( x x. y ) ) ` <. u , v >. ) = ( ( x e. CC , y e. CC |-> ( x x. y ) ) ` z ) ) |
|
| 32 | 31 | eqcoms | |- ( z = <. u , v >. -> ( ( x e. CC , y e. CC |-> ( x x. y ) ) ` <. u , v >. ) = ( ( x e. CC , y e. CC |-> ( x x. y ) ) ` z ) ) |
| 33 | fveq2 | |- ( <. u , v >. = z -> ( x. ` <. u , v >. ) = ( x. ` z ) ) |
|
| 34 | 33 | eqcoms | |- ( z = <. u , v >. -> ( x. ` <. u , v >. ) = ( x. ` z ) ) |
| 35 | 32 34 | eqeq12d | |- ( z = <. u , v >. -> ( ( ( x e. CC , y e. CC |-> ( x x. y ) ) ` <. u , v >. ) = ( x. ` <. u , v >. ) <-> ( ( x e. CC , y e. CC |-> ( x x. y ) ) ` z ) = ( x. ` z ) ) ) |
| 36 | 35 | biimpd | |- ( z = <. u , v >. -> ( ( ( x e. CC , y e. CC |-> ( x x. y ) ) ` <. u , v >. ) = ( x. ` <. u , v >. ) -> ( ( x e. CC , y e. CC |-> ( x x. y ) ) ` z ) = ( x. ` z ) ) ) |
| 37 | 4 | ssrab3 | |- X C_ NN |
| 38 | nnsscn | |- NN C_ CC |
|
| 39 | 37 38 | sstri | |- X C_ CC |
| 40 | 39 | sseli | |- ( u e. X -> u e. CC ) |
| 41 | 5 | ssrab3 | |- Y C_ NN |
| 42 | 41 38 | sstri | |- Y C_ CC |
| 43 | 42 | sseli | |- ( v e. Y -> v e. CC ) |
| 44 | ovmpot | |- ( ( u e. CC /\ v e. CC ) -> ( u ( x e. CC , y e. CC |-> ( x x. y ) ) v ) = ( u x. v ) ) |
|
| 45 | df-ov | |- ( u ( x e. CC , y e. CC |-> ( x x. y ) ) v ) = ( ( x e. CC , y e. CC |-> ( x x. y ) ) ` <. u , v >. ) |
|
| 46 | df-ov | |- ( u x. v ) = ( x. ` <. u , v >. ) |
|
| 47 | 44 45 46 | 3eqtr3g | |- ( ( u e. CC /\ v e. CC ) -> ( ( x e. CC , y e. CC |-> ( x x. y ) ) ` <. u , v >. ) = ( x. ` <. u , v >. ) ) |
| 48 | 40 43 47 | syl2an | |- ( ( u e. X /\ v e. Y ) -> ( ( x e. CC , y e. CC |-> ( x x. y ) ) ` <. u , v >. ) = ( x. ` <. u , v >. ) ) |
| 49 | 36 48 | impel | |- ( ( z = <. u , v >. /\ ( u e. X /\ v e. Y ) ) -> ( ( x e. CC , y e. CC |-> ( x x. y ) ) ` z ) = ( x. ` z ) ) |
| 50 | 49 | exlimivv | |- ( E. u E. v ( z = <. u , v >. /\ ( u e. X /\ v e. Y ) ) -> ( ( x e. CC , y e. CC |-> ( x x. y ) ) ` z ) = ( x. ` z ) ) |
| 51 | 30 50 | syl | |- ( z e. ( X X. Y ) -> ( ( x e. CC , y e. CC |-> ( x x. y ) ) ` z ) = ( x. ` z ) ) |
| 52 | 51 | eqcomd | |- ( z e. ( X X. Y ) -> ( x. ` z ) = ( ( x e. CC , y e. CC |-> ( x x. y ) ) ` z ) ) |
| 53 | 52 | csbeq1d | |- ( z e. ( X X. Y ) -> [_ ( x. ` z ) / i ]_ C = [_ ( ( x e. CC , y e. CC |-> ( x x. y ) ) ` z ) / i ]_ C ) |
| 54 | 53 | sumeq2i | |- sum_ z e. ( X X. Y ) [_ ( x. ` z ) / i ]_ C = sum_ z e. ( X X. Y ) [_ ( ( x e. CC , y e. CC |-> ( x x. y ) ) ` z ) / i ]_ C |
| 55 | fveq2 | |- ( z = <. j , k >. -> ( x. ` z ) = ( x. ` <. j , k >. ) ) |
|
| 56 | df-ov | |- ( j x. k ) = ( x. ` <. j , k >. ) |
|
| 57 | 55 56 | eqtr4di | |- ( z = <. j , k >. -> ( x. ` z ) = ( j x. k ) ) |
| 58 | 57 | csbeq1d | |- ( z = <. j , k >. -> [_ ( x. ` z ) / i ]_ C = [_ ( j x. k ) / i ]_ C ) |
| 59 | ovex | |- ( j x. k ) e. _V |
|
| 60 | 59 10 | csbie | |- [_ ( j x. k ) / i ]_ C = D |
| 61 | 58 60 | eqtrdi | |- ( z = <. j , k >. -> [_ ( x. ` z ) / i ]_ C = D ) |
| 62 | 7 | adantrr | |- ( ( ph /\ ( j e. X /\ k e. Y ) ) -> A e. CC ) |
| 63 | 8 | adantrl | |- ( ( ph /\ ( j e. X /\ k e. Y ) ) -> B e. CC ) |
| 64 | 62 63 | mulcld | |- ( ( ph /\ ( j e. X /\ k e. Y ) ) -> ( A x. B ) e. CC ) |
| 65 | 9 64 | eqeltrrd | |- ( ( ph /\ ( j e. X /\ k e. Y ) ) -> D e. CC ) |
| 66 | 61 15 20 65 | fsumxp | |- ( ph -> sum_ j e. X sum_ k e. Y D = sum_ z e. ( X X. Y ) [_ ( x. ` z ) / i ]_ C ) |
| 67 | csbeq1a | |- ( i = w -> C = [_ w / i ]_ C ) |
|
| 68 | nfcv | |- F/_ w C |
|
| 69 | nfcsb1v | |- F/_ i [_ w / i ]_ C |
|
| 70 | 67 68 69 | cbvsum | |- sum_ i e. Z C = sum_ w e. Z [_ w / i ]_ C |
| 71 | csbeq1 | |- ( w = ( ( x e. CC , y e. CC |-> ( x x. y ) ) ` z ) -> [_ w / i ]_ C = [_ ( ( x e. CC , y e. CC |-> ( x x. y ) ) ` z ) / i ]_ C ) |
|
| 72 | xpfi | |- ( ( X e. Fin /\ Y e. Fin ) -> ( X X. Y ) e. Fin ) |
|
| 73 | 15 20 72 | syl2anc | |- ( ph -> ( X X. Y ) e. Fin ) |
| 74 | 1 2 3 4 5 6 | mpodvdsmulf1o | |- ( ph -> ( ( x e. CC , y e. CC |-> ( x x. y ) ) |` ( X X. Y ) ) : ( X X. Y ) -1-1-onto-> Z ) |
| 75 | fvres | |- ( z e. ( X X. Y ) -> ( ( ( x e. CC , y e. CC |-> ( x x. y ) ) |` ( X X. Y ) ) ` z ) = ( ( x e. CC , y e. CC |-> ( x x. y ) ) ` z ) ) |
|
| 76 | 75 | adantl | |- ( ( ph /\ z e. ( X X. Y ) ) -> ( ( ( x e. CC , y e. CC |-> ( x x. y ) ) |` ( X X. Y ) ) ` z ) = ( ( x e. CC , y e. CC |-> ( x x. y ) ) ` z ) ) |
| 77 | 65 | ralrimivva | |- ( ph -> A. j e. X A. k e. Y D e. CC ) |
| 78 | 61 | eleq1d | |- ( z = <. j , k >. -> ( [_ ( x. ` z ) / i ]_ C e. CC <-> D e. CC ) ) |
| 79 | 78 | ralxp | |- ( A. z e. ( X X. Y ) [_ ( x. ` z ) / i ]_ C e. CC <-> A. j e. X A. k e. Y D e. CC ) |
| 80 | 77 79 | sylibr | |- ( ph -> A. z e. ( X X. Y ) [_ ( x. ` z ) / i ]_ C e. CC ) |
| 81 | fveq2 | |- ( z = w -> ( x. ` z ) = ( x. ` w ) ) |
|
| 82 | 81 | csbeq1d | |- ( z = w -> [_ ( x. ` z ) / i ]_ C = [_ ( x. ` w ) / i ]_ C ) |
| 83 | 82 | eleq1d | |- ( z = w -> ( [_ ( x. ` z ) / i ]_ C e. CC <-> [_ ( x. ` w ) / i ]_ C e. CC ) ) |
| 84 | 83 | cbvralvw | |- ( A. z e. ( X X. Y ) [_ ( x. ` z ) / i ]_ C e. CC <-> A. w e. ( X X. Y ) [_ ( x. ` w ) / i ]_ C e. CC ) |
| 85 | id | |- ( z e. ( X X. Y ) -> z e. ( X X. Y ) ) |
|
| 86 | 82 | eqcoms | |- ( w = z -> [_ ( x. ` z ) / i ]_ C = [_ ( x. ` w ) / i ]_ C ) |
| 87 | 86 | adantl | |- ( ( z e. ( X X. Y ) /\ w = z ) -> [_ ( x. ` z ) / i ]_ C = [_ ( x. ` w ) / i ]_ C ) |
| 88 | 87 | eleq1d | |- ( ( z e. ( X X. Y ) /\ w = z ) -> ( [_ ( x. ` z ) / i ]_ C e. CC <-> [_ ( x. ` w ) / i ]_ C e. CC ) ) |
| 89 | 53 | eleq1d | |- ( z e. ( X X. Y ) -> ( [_ ( x. ` z ) / i ]_ C e. CC <-> [_ ( ( x e. CC , y e. CC |-> ( x x. y ) ) ` z ) / i ]_ C e. CC ) ) |
| 90 | 89 | adantr | |- ( ( z e. ( X X. Y ) /\ w = z ) -> ( [_ ( x. ` z ) / i ]_ C e. CC <-> [_ ( ( x e. CC , y e. CC |-> ( x x. y ) ) ` z ) / i ]_ C e. CC ) ) |
| 91 | 88 90 | bitr3d | |- ( ( z e. ( X X. Y ) /\ w = z ) -> ( [_ ( x. ` w ) / i ]_ C e. CC <-> [_ ( ( x e. CC , y e. CC |-> ( x x. y ) ) ` z ) / i ]_ C e. CC ) ) |
| 92 | 85 91 | rspcdv | |- ( z e. ( X X. Y ) -> ( A. w e. ( X X. Y ) [_ ( x. ` w ) / i ]_ C e. CC -> [_ ( ( x e. CC , y e. CC |-> ( x x. y ) ) ` z ) / i ]_ C e. CC ) ) |
| 93 | 92 | com12 | |- ( A. w e. ( X X. Y ) [_ ( x. ` w ) / i ]_ C e. CC -> ( z e. ( X X. Y ) -> [_ ( ( x e. CC , y e. CC |-> ( x x. y ) ) ` z ) / i ]_ C e. CC ) ) |
| 94 | 93 | ralrimiv | |- ( A. w e. ( X X. Y ) [_ ( x. ` w ) / i ]_ C e. CC -> A. z e. ( X X. Y ) [_ ( ( x e. CC , y e. CC |-> ( x x. y ) ) ` z ) / i ]_ C e. CC ) |
| 95 | 84 94 | sylbi | |- ( A. z e. ( X X. Y ) [_ ( x. ` z ) / i ]_ C e. CC -> A. z e. ( X X. Y ) [_ ( ( x e. CC , y e. CC |-> ( x x. y ) ) ` z ) / i ]_ C e. CC ) |
| 96 | 80 95 | syl | |- ( ph -> A. z e. ( X X. Y ) [_ ( ( x e. CC , y e. CC |-> ( x x. y ) ) ` z ) / i ]_ C e. CC ) |
| 97 | mpomulf | |- ( x e. CC , y e. CC |-> ( x x. y ) ) : ( CC X. CC ) --> CC |
|
| 98 | ffn | |- ( ( x e. CC , y e. CC |-> ( x x. y ) ) : ( CC X. CC ) --> CC -> ( x e. CC , y e. CC |-> ( x x. y ) ) Fn ( CC X. CC ) ) |
|
| 99 | 97 98 | ax-mp | |- ( x e. CC , y e. CC |-> ( x x. y ) ) Fn ( CC X. CC ) |
| 100 | xpss12 | |- ( ( X C_ CC /\ Y C_ CC ) -> ( X X. Y ) C_ ( CC X. CC ) ) |
|
| 101 | 39 42 100 | mp2an | |- ( X X. Y ) C_ ( CC X. CC ) |
| 102 | 71 | eleq1d | |- ( w = ( ( x e. CC , y e. CC |-> ( x x. y ) ) ` z ) -> ( [_ w / i ]_ C e. CC <-> [_ ( ( x e. CC , y e. CC |-> ( x x. y ) ) ` z ) / i ]_ C e. CC ) ) |
| 103 | 102 | ralima | |- ( ( ( x e. CC , y e. CC |-> ( x x. y ) ) Fn ( CC X. CC ) /\ ( X X. Y ) C_ ( CC X. CC ) ) -> ( A. w e. ( ( x e. CC , y e. CC |-> ( x x. y ) ) " ( X X. Y ) ) [_ w / i ]_ C e. CC <-> A. z e. ( X X. Y ) [_ ( ( x e. CC , y e. CC |-> ( x x. y ) ) ` z ) / i ]_ C e. CC ) ) |
| 104 | 99 101 103 | mp2an | |- ( A. w e. ( ( x e. CC , y e. CC |-> ( x x. y ) ) " ( X X. Y ) ) [_ w / i ]_ C e. CC <-> A. z e. ( X X. Y ) [_ ( ( x e. CC , y e. CC |-> ( x x. y ) ) ` z ) / i ]_ C e. CC ) |
| 105 | df-ima | |- ( ( x e. CC , y e. CC |-> ( x x. y ) ) " ( X X. Y ) ) = ran ( ( x e. CC , y e. CC |-> ( x x. y ) ) |` ( X X. Y ) ) |
|
| 106 | f1ofo | |- ( ( ( x e. CC , y e. CC |-> ( x x. y ) ) |` ( X X. Y ) ) : ( X X. Y ) -1-1-onto-> Z -> ( ( x e. CC , y e. CC |-> ( x x. y ) ) |` ( X X. Y ) ) : ( X X. Y ) -onto-> Z ) |
|
| 107 | forn | |- ( ( ( x e. CC , y e. CC |-> ( x x. y ) ) |` ( X X. Y ) ) : ( X X. Y ) -onto-> Z -> ran ( ( x e. CC , y e. CC |-> ( x x. y ) ) |` ( X X. Y ) ) = Z ) |
|
| 108 | 74 106 107 | 3syl | |- ( ph -> ran ( ( x e. CC , y e. CC |-> ( x x. y ) ) |` ( X X. Y ) ) = Z ) |
| 109 | 105 108 | eqtrid | |- ( ph -> ( ( x e. CC , y e. CC |-> ( x x. y ) ) " ( X X. Y ) ) = Z ) |
| 110 | 109 | raleqdv | |- ( ph -> ( A. w e. ( ( x e. CC , y e. CC |-> ( x x. y ) ) " ( X X. Y ) ) [_ w / i ]_ C e. CC <-> A. w e. Z [_ w / i ]_ C e. CC ) ) |
| 111 | 104 110 | bitr3id | |- ( ph -> ( A. z e. ( X X. Y ) [_ ( ( x e. CC , y e. CC |-> ( x x. y ) ) ` z ) / i ]_ C e. CC <-> A. w e. Z [_ w / i ]_ C e. CC ) ) |
| 112 | 96 111 | mpbid | |- ( ph -> A. w e. Z [_ w / i ]_ C e. CC ) |
| 113 | 112 | r19.21bi | |- ( ( ph /\ w e. Z ) -> [_ w / i ]_ C e. CC ) |
| 114 | 71 73 74 76 113 | fsumf1o | |- ( ph -> sum_ w e. Z [_ w / i ]_ C = sum_ z e. ( X X. Y ) [_ ( ( x e. CC , y e. CC |-> ( x x. y ) ) ` z ) / i ]_ C ) |
| 115 | 70 114 | eqtrid | |- ( ph -> sum_ i e. Z C = sum_ z e. ( X X. Y ) [_ ( ( x e. CC , y e. CC |-> ( x x. y ) ) ` z ) / i ]_ C ) |
| 116 | 54 66 115 | 3eqtr4a | |- ( ph -> sum_ j e. X sum_ k e. Y D = sum_ i e. Z C ) |
| 117 | 22 29 116 | 3eqtrd | |- ( ph -> ( sum_ j e. X A x. sum_ k e. Y B ) = sum_ i e. Z C ) |