This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a Cartesian product. Uses fewer axioms than elxp . (Contributed by NM, 4-Jul-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elxpi | |- ( A e. ( B X. C ) -> E. x E. y ( A = <. x , y >. /\ ( x e. B /\ y e. C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 | |- ( z = A -> ( z = <. x , y >. <-> A = <. x , y >. ) ) |
|
| 2 | 1 | anbi1d | |- ( z = A -> ( ( z = <. x , y >. /\ ( x e. B /\ y e. C ) ) <-> ( A = <. x , y >. /\ ( x e. B /\ y e. C ) ) ) ) |
| 3 | 2 | 2exbidv | |- ( z = A -> ( E. x E. y ( z = <. x , y >. /\ ( x e. B /\ y e. C ) ) <-> E. x E. y ( A = <. x , y >. /\ ( x e. B /\ y e. C ) ) ) ) |
| 4 | df-xp | |- ( B X. C ) = { <. x , y >. | ( x e. B /\ y e. C ) } |
|
| 5 | df-opab | |- { <. x , y >. | ( x e. B /\ y e. C ) } = { z | E. x E. y ( z = <. x , y >. /\ ( x e. B /\ y e. C ) ) } |
|
| 6 | 4 5 | eqtri | |- ( B X. C ) = { z | E. x E. y ( z = <. x , y >. /\ ( x e. B /\ y e. C ) ) } |
| 7 | 3 6 | elab2g | |- ( A e. ( B X. C ) -> ( A e. ( B X. C ) <-> E. x E. y ( A = <. x , y >. /\ ( x e. B /\ y e. C ) ) ) ) |
| 8 | 7 | ibi | |- ( A e. ( B X. C ) -> E. x E. y ( A = <. x , y >. /\ ( x e. B /\ y e. C ) ) ) |