This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Combine two sums into a single sum over the cartesian product. (Contributed by Mario Carneiro, 23-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumxp.1 | |- ( z = <. j , k >. -> D = C ) |
|
| fsumxp.2 | |- ( ph -> A e. Fin ) |
||
| fsumxp.3 | |- ( ph -> B e. Fin ) |
||
| fsumxp.4 | |- ( ( ph /\ ( j e. A /\ k e. B ) ) -> C e. CC ) |
||
| Assertion | fsumxp | |- ( ph -> sum_ j e. A sum_ k e. B C = sum_ z e. ( A X. B ) D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumxp.1 | |- ( z = <. j , k >. -> D = C ) |
|
| 2 | fsumxp.2 | |- ( ph -> A e. Fin ) |
|
| 3 | fsumxp.3 | |- ( ph -> B e. Fin ) |
|
| 4 | fsumxp.4 | |- ( ( ph /\ ( j e. A /\ k e. B ) ) -> C e. CC ) |
|
| 5 | 3 | adantr | |- ( ( ph /\ j e. A ) -> B e. Fin ) |
| 6 | 1 2 5 4 | fsum2d | |- ( ph -> sum_ j e. A sum_ k e. B C = sum_ z e. U_ j e. A ( { j } X. B ) D ) |
| 7 | iunxpconst | |- U_ j e. A ( { j } X. B ) = ( A X. B ) |
|
| 8 | 7 | sumeq1i | |- sum_ z e. U_ j e. A ( { j } X. B ) D = sum_ z e. ( A X. B ) D |
| 9 | 6 8 | eqtrdi | |- ( ph -> sum_ j e. A sum_ k e. B C = sum_ z e. ( A X. B ) D ) |