This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication is an operation on complex numbers. Version of ax-mulf using maps-to notation, proved from the axioms of set theory and ax-mulcl . (Contributed by GG, 16-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mpomulf | |- ( x e. CC , y e. CC |-> ( x x. y ) ) : ( CC X. CC ) --> CC |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( x e. CC , y e. CC |-> ( x x. y ) ) = ( x e. CC , y e. CC |-> ( x x. y ) ) |
|
| 2 | ovex | |- ( x x. y ) e. _V |
|
| 3 | 1 2 | fnmpoi | |- ( x e. CC , y e. CC |-> ( x x. y ) ) Fn ( CC X. CC ) |
| 4 | simpll | |- ( ( ( x e. CC /\ y e. CC ) /\ z = ( x x. y ) ) -> x e. CC ) |
|
| 5 | simplr | |- ( ( ( x e. CC /\ y e. CC ) /\ z = ( x x. y ) ) -> y e. CC ) |
|
| 6 | mulcl | |- ( ( x e. CC /\ y e. CC ) -> ( x x. y ) e. CC ) |
|
| 7 | eleq1a | |- ( ( x x. y ) e. CC -> ( z = ( x x. y ) -> z e. CC ) ) |
|
| 8 | 6 7 | syl | |- ( ( x e. CC /\ y e. CC ) -> ( z = ( x x. y ) -> z e. CC ) ) |
| 9 | 8 | imp | |- ( ( ( x e. CC /\ y e. CC ) /\ z = ( x x. y ) ) -> z e. CC ) |
| 10 | 4 5 9 | 3jca | |- ( ( ( x e. CC /\ y e. CC ) /\ z = ( x x. y ) ) -> ( x e. CC /\ y e. CC /\ z e. CC ) ) |
| 11 | 10 | ssoprab2i | |- { <. <. x , y >. , z >. | ( ( x e. CC /\ y e. CC ) /\ z = ( x x. y ) ) } C_ { <. <. x , y >. , z >. | ( x e. CC /\ y e. CC /\ z e. CC ) } |
| 12 | df-mpo | |- ( x e. CC , y e. CC |-> ( x x. y ) ) = { <. <. x , y >. , z >. | ( ( x e. CC /\ y e. CC ) /\ z = ( x x. y ) ) } |
|
| 13 | dfxp3 | |- ( ( CC X. CC ) X. CC ) = { <. <. x , y >. , z >. | ( x e. CC /\ y e. CC /\ z e. CC ) } |
|
| 14 | 11 12 13 | 3sstr4i | |- ( x e. CC , y e. CC |-> ( x x. y ) ) C_ ( ( CC X. CC ) X. CC ) |
| 15 | dff2 | |- ( ( x e. CC , y e. CC |-> ( x x. y ) ) : ( CC X. CC ) --> CC <-> ( ( x e. CC , y e. CC |-> ( x x. y ) ) Fn ( CC X. CC ) /\ ( x e. CC , y e. CC |-> ( x x. y ) ) C_ ( ( CC X. CC ) X. CC ) ) ) |
|
| 16 | 3 14 15 | mpbir2an | |- ( x e. CC , y e. CC |-> ( x x. y ) ) : ( CC X. CC ) --> CC |