This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There are no empty filter bases. (Contributed by Jeff Hankins, 1-Sep-2009) (Revised by Mario Carneiro, 28-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fbasne0 | |- ( F e. ( fBas ` B ) -> F =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm | |- ( F e. ( fBas ` B ) -> B e. dom fBas ) |
|
| 2 | isfbas | |- ( B e. dom fBas -> ( F e. ( fBas ` B ) <-> ( F C_ ~P B /\ ( F =/= (/) /\ (/) e/ F /\ A. x e. F A. y e. F ( F i^i ~P ( x i^i y ) ) =/= (/) ) ) ) ) |
|
| 3 | 1 2 | syl | |- ( F e. ( fBas ` B ) -> ( F e. ( fBas ` B ) <-> ( F C_ ~P B /\ ( F =/= (/) /\ (/) e/ F /\ A. x e. F A. y e. F ( F i^i ~P ( x i^i y ) ) =/= (/) ) ) ) ) |
| 4 | 3 | ibi | |- ( F e. ( fBas ` B ) -> ( F C_ ~P B /\ ( F =/= (/) /\ (/) e/ F /\ A. x e. F A. y e. F ( F i^i ~P ( x i^i y ) ) =/= (/) ) ) ) |
| 5 | simpr1 | |- ( ( F C_ ~P B /\ ( F =/= (/) /\ (/) e/ F /\ A. x e. F A. y e. F ( F i^i ~P ( x i^i y ) ) =/= (/) ) ) -> F =/= (/) ) |
|
| 6 | 4 5 | syl | |- ( F e. ( fBas ` B ) -> F =/= (/) ) |