This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition for a set to generate a filter base. (Contributed by Jeff Hankins, 2-Sep-2009) (Revised by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fsubbas | |- ( X e. V -> ( ( fi ` A ) e. ( fBas ` X ) <-> ( A C_ ~P X /\ A =/= (/) /\ -. (/) e. ( fi ` A ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fbasne0 | |- ( ( fi ` A ) e. ( fBas ` X ) -> ( fi ` A ) =/= (/) ) |
|
| 2 | fvprc | |- ( -. A e. _V -> ( fi ` A ) = (/) ) |
|
| 3 | 2 | necon1ai | |- ( ( fi ` A ) =/= (/) -> A e. _V ) |
| 4 | 1 3 | syl | |- ( ( fi ` A ) e. ( fBas ` X ) -> A e. _V ) |
| 5 | ssfii | |- ( A e. _V -> A C_ ( fi ` A ) ) |
|
| 6 | 4 5 | syl | |- ( ( fi ` A ) e. ( fBas ` X ) -> A C_ ( fi ` A ) ) |
| 7 | fbsspw | |- ( ( fi ` A ) e. ( fBas ` X ) -> ( fi ` A ) C_ ~P X ) |
|
| 8 | 6 7 | sstrd | |- ( ( fi ` A ) e. ( fBas ` X ) -> A C_ ~P X ) |
| 9 | fieq0 | |- ( A e. _V -> ( A = (/) <-> ( fi ` A ) = (/) ) ) |
|
| 10 | 9 | necon3bid | |- ( A e. _V -> ( A =/= (/) <-> ( fi ` A ) =/= (/) ) ) |
| 11 | 10 | biimpar | |- ( ( A e. _V /\ ( fi ` A ) =/= (/) ) -> A =/= (/) ) |
| 12 | 4 1 11 | syl2anc | |- ( ( fi ` A ) e. ( fBas ` X ) -> A =/= (/) ) |
| 13 | 0nelfb | |- ( ( fi ` A ) e. ( fBas ` X ) -> -. (/) e. ( fi ` A ) ) |
|
| 14 | 8 12 13 | 3jca | |- ( ( fi ` A ) e. ( fBas ` X ) -> ( A C_ ~P X /\ A =/= (/) /\ -. (/) e. ( fi ` A ) ) ) |
| 15 | simpr1 | |- ( ( X e. V /\ ( A C_ ~P X /\ A =/= (/) /\ -. (/) e. ( fi ` A ) ) ) -> A C_ ~P X ) |
|
| 16 | fipwss | |- ( A C_ ~P X -> ( fi ` A ) C_ ~P X ) |
|
| 17 | 15 16 | syl | |- ( ( X e. V /\ ( A C_ ~P X /\ A =/= (/) /\ -. (/) e. ( fi ` A ) ) ) -> ( fi ` A ) C_ ~P X ) |
| 18 | pwexg | |- ( X e. V -> ~P X e. _V ) |
|
| 19 | 18 | adantr | |- ( ( X e. V /\ ( A C_ ~P X /\ A =/= (/) /\ -. (/) e. ( fi ` A ) ) ) -> ~P X e. _V ) |
| 20 | 19 15 | ssexd | |- ( ( X e. V /\ ( A C_ ~P X /\ A =/= (/) /\ -. (/) e. ( fi ` A ) ) ) -> A e. _V ) |
| 21 | simpr2 | |- ( ( X e. V /\ ( A C_ ~P X /\ A =/= (/) /\ -. (/) e. ( fi ` A ) ) ) -> A =/= (/) ) |
|
| 22 | 10 | biimpa | |- ( ( A e. _V /\ A =/= (/) ) -> ( fi ` A ) =/= (/) ) |
| 23 | 20 21 22 | syl2anc | |- ( ( X e. V /\ ( A C_ ~P X /\ A =/= (/) /\ -. (/) e. ( fi ` A ) ) ) -> ( fi ` A ) =/= (/) ) |
| 24 | simpr3 | |- ( ( X e. V /\ ( A C_ ~P X /\ A =/= (/) /\ -. (/) e. ( fi ` A ) ) ) -> -. (/) e. ( fi ` A ) ) |
|
| 25 | df-nel | |- ( (/) e/ ( fi ` A ) <-> -. (/) e. ( fi ` A ) ) |
|
| 26 | 24 25 | sylibr | |- ( ( X e. V /\ ( A C_ ~P X /\ A =/= (/) /\ -. (/) e. ( fi ` A ) ) ) -> (/) e/ ( fi ` A ) ) |
| 27 | fiin | |- ( ( x e. ( fi ` A ) /\ y e. ( fi ` A ) ) -> ( x i^i y ) e. ( fi ` A ) ) |
|
| 28 | ssid | |- ( x i^i y ) C_ ( x i^i y ) |
|
| 29 | sseq1 | |- ( z = ( x i^i y ) -> ( z C_ ( x i^i y ) <-> ( x i^i y ) C_ ( x i^i y ) ) ) |
|
| 30 | 29 | rspcev | |- ( ( ( x i^i y ) e. ( fi ` A ) /\ ( x i^i y ) C_ ( x i^i y ) ) -> E. z e. ( fi ` A ) z C_ ( x i^i y ) ) |
| 31 | 27 28 30 | sylancl | |- ( ( x e. ( fi ` A ) /\ y e. ( fi ` A ) ) -> E. z e. ( fi ` A ) z C_ ( x i^i y ) ) |
| 32 | 31 | rgen2 | |- A. x e. ( fi ` A ) A. y e. ( fi ` A ) E. z e. ( fi ` A ) z C_ ( x i^i y ) |
| 33 | 32 | a1i | |- ( ( X e. V /\ ( A C_ ~P X /\ A =/= (/) /\ -. (/) e. ( fi ` A ) ) ) -> A. x e. ( fi ` A ) A. y e. ( fi ` A ) E. z e. ( fi ` A ) z C_ ( x i^i y ) ) |
| 34 | 23 26 33 | 3jca | |- ( ( X e. V /\ ( A C_ ~P X /\ A =/= (/) /\ -. (/) e. ( fi ` A ) ) ) -> ( ( fi ` A ) =/= (/) /\ (/) e/ ( fi ` A ) /\ A. x e. ( fi ` A ) A. y e. ( fi ` A ) E. z e. ( fi ` A ) z C_ ( x i^i y ) ) ) |
| 35 | isfbas2 | |- ( X e. V -> ( ( fi ` A ) e. ( fBas ` X ) <-> ( ( fi ` A ) C_ ~P X /\ ( ( fi ` A ) =/= (/) /\ (/) e/ ( fi ` A ) /\ A. x e. ( fi ` A ) A. y e. ( fi ` A ) E. z e. ( fi ` A ) z C_ ( x i^i y ) ) ) ) ) |
|
| 36 | 35 | adantr | |- ( ( X e. V /\ ( A C_ ~P X /\ A =/= (/) /\ -. (/) e. ( fi ` A ) ) ) -> ( ( fi ` A ) e. ( fBas ` X ) <-> ( ( fi ` A ) C_ ~P X /\ ( ( fi ` A ) =/= (/) /\ (/) e/ ( fi ` A ) /\ A. x e. ( fi ` A ) A. y e. ( fi ` A ) E. z e. ( fi ` A ) z C_ ( x i^i y ) ) ) ) ) |
| 37 | 17 34 36 | mpbir2and | |- ( ( X e. V /\ ( A C_ ~P X /\ A =/= (/) /\ -. (/) e. ( fi ` A ) ) ) -> ( fi ` A ) e. ( fBas ` X ) ) |
| 38 | 37 | ex | |- ( X e. V -> ( ( A C_ ~P X /\ A =/= (/) /\ -. (/) e. ( fi ` A ) ) -> ( fi ` A ) e. ( fBas ` X ) ) ) |
| 39 | 14 38 | impbid2 | |- ( X e. V -> ( ( fi ` A ) e. ( fBas ` X ) <-> ( A C_ ~P X /\ A =/= (/) /\ -. (/) e. ( fi ` A ) ) ) ) |