This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any element of a set A is the intersection of a finite subset of A . (Contributed by FL, 27-Apr-2008) (Proof shortened by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssfii | |- ( A e. V -> A C_ ( fi ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | |- x e. _V |
|
| 2 | 1 | intsn | |- |^| { x } = x |
| 3 | simpl | |- ( ( A e. V /\ x e. A ) -> A e. V ) |
|
| 4 | simpr | |- ( ( A e. V /\ x e. A ) -> x e. A ) |
|
| 5 | 4 | snssd | |- ( ( A e. V /\ x e. A ) -> { x } C_ A ) |
| 6 | 1 | snnz | |- { x } =/= (/) |
| 7 | 6 | a1i | |- ( ( A e. V /\ x e. A ) -> { x } =/= (/) ) |
| 8 | snfi | |- { x } e. Fin |
|
| 9 | 8 | a1i | |- ( ( A e. V /\ x e. A ) -> { x } e. Fin ) |
| 10 | elfir | |- ( ( A e. V /\ ( { x } C_ A /\ { x } =/= (/) /\ { x } e. Fin ) ) -> |^| { x } e. ( fi ` A ) ) |
|
| 11 | 3 5 7 9 10 | syl13anc | |- ( ( A e. V /\ x e. A ) -> |^| { x } e. ( fi ` A ) ) |
| 12 | 2 11 | eqeltrrid | |- ( ( A e. V /\ x e. A ) -> x e. ( fi ` A ) ) |
| 13 | 12 | ex | |- ( A e. V -> ( x e. A -> x e. ( fi ` A ) ) ) |
| 14 | 13 | ssrdv | |- ( A e. V -> A C_ ( fi ` A ) ) |