This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A scaled monomial is a polynomial. (Contributed by Stefan O'Rear, 8-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplmon2cl.p | |- P = ( I mPoly R ) |
|
| mplmon2cl.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
||
| mplmon2cl.z | |- .0. = ( 0g ` R ) |
||
| mplmon2cl.c | |- C = ( Base ` R ) |
||
| mplmon2cl.i | |- ( ph -> I e. W ) |
||
| mplmon2cl.r | |- ( ph -> R e. Ring ) |
||
| mplmon2cl.b | |- B = ( Base ` P ) |
||
| mplmon2cl.x | |- ( ph -> X e. C ) |
||
| mplmon2cl.k | |- ( ph -> K e. D ) |
||
| Assertion | mplmon2cl | |- ( ph -> ( y e. D |-> if ( y = K , X , .0. ) ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplmon2cl.p | |- P = ( I mPoly R ) |
|
| 2 | mplmon2cl.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 3 | mplmon2cl.z | |- .0. = ( 0g ` R ) |
|
| 4 | mplmon2cl.c | |- C = ( Base ` R ) |
|
| 5 | mplmon2cl.i | |- ( ph -> I e. W ) |
|
| 6 | mplmon2cl.r | |- ( ph -> R e. Ring ) |
|
| 7 | mplmon2cl.b | |- B = ( Base ` P ) |
|
| 8 | mplmon2cl.x | |- ( ph -> X e. C ) |
|
| 9 | mplmon2cl.k | |- ( ph -> K e. D ) |
|
| 10 | eqid | |- ( .s ` P ) = ( .s ` P ) |
|
| 11 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 12 | 1 10 2 11 3 4 5 6 9 8 | mplmon2 | |- ( ph -> ( X ( .s ` P ) ( y e. D |-> if ( y = K , ( 1r ` R ) , .0. ) ) ) = ( y e. D |-> if ( y = K , X , .0. ) ) ) |
| 13 | 1 5 6 | mpllmodd | |- ( ph -> P e. LMod ) |
| 14 | 1 5 6 | mplsca | |- ( ph -> R = ( Scalar ` P ) ) |
| 15 | 14 | fveq2d | |- ( ph -> ( Base ` R ) = ( Base ` ( Scalar ` P ) ) ) |
| 16 | 4 15 | eqtrid | |- ( ph -> C = ( Base ` ( Scalar ` P ) ) ) |
| 17 | 8 16 | eleqtrd | |- ( ph -> X e. ( Base ` ( Scalar ` P ) ) ) |
| 18 | 1 7 3 11 2 5 6 9 | mplmon | |- ( ph -> ( y e. D |-> if ( y = K , ( 1r ` R ) , .0. ) ) e. B ) |
| 19 | eqid | |- ( Scalar ` P ) = ( Scalar ` P ) |
|
| 20 | eqid | |- ( Base ` ( Scalar ` P ) ) = ( Base ` ( Scalar ` P ) ) |
|
| 21 | 7 19 10 20 | lmodvscl | |- ( ( P e. LMod /\ X e. ( Base ` ( Scalar ` P ) ) /\ ( y e. D |-> if ( y = K , ( 1r ` R ) , .0. ) ) e. B ) -> ( X ( .s ` P ) ( y e. D |-> if ( y = K , ( 1r ` R ) , .0. ) ) ) e. B ) |
| 22 | 13 17 18 21 | syl3anc | |- ( ph -> ( X ( .s ` P ) ( y e. D |-> if ( y = K , ( 1r ` R ) , .0. ) ) ) e. B ) |
| 23 | 12 22 | eqeltrrd | |- ( ph -> ( y e. D |-> if ( y = K , X , .0. ) ) e. B ) |