This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A value in a finite set of sequential integers is a border value if it is not contained in the half-open integer range contained in the finite set of sequential integers. (Contributed by Alexander van der Vekens, 31-Oct-2017) (Revised by Thierry Arnoux, 22-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfznelfzo | |- ( ( M e. ( 0 ... K ) /\ -. M e. ( 1 ..^ K ) ) -> ( M = 0 \/ M = K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfz2nn0 | |- ( M e. ( 0 ... K ) <-> ( M e. NN0 /\ K e. NN0 /\ M <_ K ) ) |
|
| 2 | nn0z | |- ( M e. NN0 -> M e. ZZ ) |
|
| 3 | nn0z | |- ( K e. NN0 -> K e. ZZ ) |
|
| 4 | 2 3 | anim12i | |- ( ( M e. NN0 /\ K e. NN0 ) -> ( M e. ZZ /\ K e. ZZ ) ) |
| 5 | 4 | 3adant3 | |- ( ( M e. NN0 /\ K e. NN0 /\ M <_ K ) -> ( M e. ZZ /\ K e. ZZ ) ) |
| 6 | elfzom1b | |- ( ( M e. ZZ /\ K e. ZZ ) -> ( M e. ( 1 ..^ K ) <-> ( M - 1 ) e. ( 0 ..^ ( K - 1 ) ) ) ) |
|
| 7 | 5 6 | syl | |- ( ( M e. NN0 /\ K e. NN0 /\ M <_ K ) -> ( M e. ( 1 ..^ K ) <-> ( M - 1 ) e. ( 0 ..^ ( K - 1 ) ) ) ) |
| 8 | 7 | notbid | |- ( ( M e. NN0 /\ K e. NN0 /\ M <_ K ) -> ( -. M e. ( 1 ..^ K ) <-> -. ( M - 1 ) e. ( 0 ..^ ( K - 1 ) ) ) ) |
| 9 | elfzo0 | |- ( ( M - 1 ) e. ( 0 ..^ ( K - 1 ) ) <-> ( ( M - 1 ) e. NN0 /\ ( K - 1 ) e. NN /\ ( M - 1 ) < ( K - 1 ) ) ) |
|
| 10 | 9 | a1i | |- ( ( M e. NN0 /\ K e. NN0 /\ M <_ K ) -> ( ( M - 1 ) e. ( 0 ..^ ( K - 1 ) ) <-> ( ( M - 1 ) e. NN0 /\ ( K - 1 ) e. NN /\ ( M - 1 ) < ( K - 1 ) ) ) ) |
| 11 | 10 | notbid | |- ( ( M e. NN0 /\ K e. NN0 /\ M <_ K ) -> ( -. ( M - 1 ) e. ( 0 ..^ ( K - 1 ) ) <-> -. ( ( M - 1 ) e. NN0 /\ ( K - 1 ) e. NN /\ ( M - 1 ) < ( K - 1 ) ) ) ) |
| 12 | 3ianor | |- ( -. ( ( M - 1 ) e. NN0 /\ ( K - 1 ) e. NN /\ ( M - 1 ) < ( K - 1 ) ) <-> ( -. ( M - 1 ) e. NN0 \/ -. ( K - 1 ) e. NN \/ -. ( M - 1 ) < ( K - 1 ) ) ) |
|
| 13 | elnnne0 | |- ( M e. NN <-> ( M e. NN0 /\ M =/= 0 ) ) |
|
| 14 | df-ne | |- ( M =/= 0 <-> -. M = 0 ) |
|
| 15 | 14 | anbi2i | |- ( ( M e. NN0 /\ M =/= 0 ) <-> ( M e. NN0 /\ -. M = 0 ) ) |
| 16 | 13 15 | bitr2i | |- ( ( M e. NN0 /\ -. M = 0 ) <-> M e. NN ) |
| 17 | nnm1nn0 | |- ( M e. NN -> ( M - 1 ) e. NN0 ) |
|
| 18 | 16 17 | sylbi | |- ( ( M e. NN0 /\ -. M = 0 ) -> ( M - 1 ) e. NN0 ) |
| 19 | 18 | ex | |- ( M e. NN0 -> ( -. M = 0 -> ( M - 1 ) e. NN0 ) ) |
| 20 | 19 | con1d | |- ( M e. NN0 -> ( -. ( M - 1 ) e. NN0 -> M = 0 ) ) |
| 21 | 20 | imp | |- ( ( M e. NN0 /\ -. ( M - 1 ) e. NN0 ) -> M = 0 ) |
| 22 | 21 | orcd | |- ( ( M e. NN0 /\ -. ( M - 1 ) e. NN0 ) -> ( M = 0 \/ M = K ) ) |
| 23 | 22 | ex | |- ( M e. NN0 -> ( -. ( M - 1 ) e. NN0 -> ( M = 0 \/ M = K ) ) ) |
| 24 | 23 | 3ad2ant1 | |- ( ( M e. NN0 /\ K e. NN0 /\ M <_ K ) -> ( -. ( M - 1 ) e. NN0 -> ( M = 0 \/ M = K ) ) ) |
| 25 | 24 | com12 | |- ( -. ( M - 1 ) e. NN0 -> ( ( M e. NN0 /\ K e. NN0 /\ M <_ K ) -> ( M = 0 \/ M = K ) ) ) |
| 26 | ioran | |- ( -. ( M = 0 \/ M = K ) <-> ( -. M = 0 /\ -. M = K ) ) |
|
| 27 | nn1m1nn | |- ( M e. NN -> ( M = 1 \/ ( M - 1 ) e. NN ) ) |
|
| 28 | df-ne | |- ( M =/= K <-> -. M = K ) |
|
| 29 | necom | |- ( M =/= K <-> K =/= M ) |
|
| 30 | nn0re | |- ( M e. NN0 -> M e. RR ) |
|
| 31 | 30 | ad2antlr | |- ( ( ( K e. NN0 /\ M e. NN0 ) /\ M <_ K ) -> M e. RR ) |
| 32 | nn0re | |- ( K e. NN0 -> K e. RR ) |
|
| 33 | 32 | adantr | |- ( ( K e. NN0 /\ M e. NN0 ) -> K e. RR ) |
| 34 | 33 | adantr | |- ( ( ( K e. NN0 /\ M e. NN0 ) /\ M <_ K ) -> K e. RR ) |
| 35 | simpr | |- ( ( ( K e. NN0 /\ M e. NN0 ) /\ M <_ K ) -> M <_ K ) |
|
| 36 | 31 34 35 | leltned | |- ( ( ( K e. NN0 /\ M e. NN0 ) /\ M <_ K ) -> ( M < K <-> K =/= M ) ) |
| 37 | 29 36 | bitr4id | |- ( ( ( K e. NN0 /\ M e. NN0 ) /\ M <_ K ) -> ( M =/= K <-> M < K ) ) |
| 38 | 37 | adantr | |- ( ( ( ( K e. NN0 /\ M e. NN0 ) /\ M <_ K ) /\ M = 1 ) -> ( M =/= K <-> M < K ) ) |
| 39 | breq1 | |- ( M = 1 -> ( M < K <-> 1 < K ) ) |
|
| 40 | 39 | biimpa | |- ( ( M = 1 /\ M < K ) -> 1 < K ) |
| 41 | 1red | |- ( ( K e. NN0 /\ M e. NN0 ) -> 1 e. RR ) |
|
| 42 | 41 33 41 | ltsub1d | |- ( ( K e. NN0 /\ M e. NN0 ) -> ( 1 < K <-> ( 1 - 1 ) < ( K - 1 ) ) ) |
| 43 | 1m1e0 | |- ( 1 - 1 ) = 0 |
|
| 44 | 43 | breq1i | |- ( ( 1 - 1 ) < ( K - 1 ) <-> 0 < ( K - 1 ) ) |
| 45 | 1zzd | |- ( K e. NN0 -> 1 e. ZZ ) |
|
| 46 | 3 45 | zsubcld | |- ( K e. NN0 -> ( K - 1 ) e. ZZ ) |
| 47 | 46 | adantr | |- ( ( K e. NN0 /\ M e. NN0 ) -> ( K - 1 ) e. ZZ ) |
| 48 | 47 | adantr | |- ( ( ( K e. NN0 /\ M e. NN0 ) /\ 0 < ( K - 1 ) ) -> ( K - 1 ) e. ZZ ) |
| 49 | simpr | |- ( ( ( K e. NN0 /\ M e. NN0 ) /\ 0 < ( K - 1 ) ) -> 0 < ( K - 1 ) ) |
|
| 50 | elnnz | |- ( ( K - 1 ) e. NN <-> ( ( K - 1 ) e. ZZ /\ 0 < ( K - 1 ) ) ) |
|
| 51 | 48 49 50 | sylanbrc | |- ( ( ( K e. NN0 /\ M e. NN0 ) /\ 0 < ( K - 1 ) ) -> ( K - 1 ) e. NN ) |
| 52 | 51 | ex | |- ( ( K e. NN0 /\ M e. NN0 ) -> ( 0 < ( K - 1 ) -> ( K - 1 ) e. NN ) ) |
| 53 | 44 52 | biimtrid | |- ( ( K e. NN0 /\ M e. NN0 ) -> ( ( 1 - 1 ) < ( K - 1 ) -> ( K - 1 ) e. NN ) ) |
| 54 | 42 53 | sylbid | |- ( ( K e. NN0 /\ M e. NN0 ) -> ( 1 < K -> ( K - 1 ) e. NN ) ) |
| 55 | 40 54 | syl5 | |- ( ( K e. NN0 /\ M e. NN0 ) -> ( ( M = 1 /\ M < K ) -> ( K - 1 ) e. NN ) ) |
| 56 | 55 | expd | |- ( ( K e. NN0 /\ M e. NN0 ) -> ( M = 1 -> ( M < K -> ( K - 1 ) e. NN ) ) ) |
| 57 | 56 | adantr | |- ( ( ( K e. NN0 /\ M e. NN0 ) /\ M <_ K ) -> ( M = 1 -> ( M < K -> ( K - 1 ) e. NN ) ) ) |
| 58 | 57 | imp | |- ( ( ( ( K e. NN0 /\ M e. NN0 ) /\ M <_ K ) /\ M = 1 ) -> ( M < K -> ( K - 1 ) e. NN ) ) |
| 59 | 38 58 | sylbid | |- ( ( ( ( K e. NN0 /\ M e. NN0 ) /\ M <_ K ) /\ M = 1 ) -> ( M =/= K -> ( K - 1 ) e. NN ) ) |
| 60 | 59 | exp31 | |- ( ( K e. NN0 /\ M e. NN0 ) -> ( M <_ K -> ( M = 1 -> ( M =/= K -> ( K - 1 ) e. NN ) ) ) ) |
| 61 | 60 | com14 | |- ( M =/= K -> ( M <_ K -> ( M = 1 -> ( ( K e. NN0 /\ M e. NN0 ) -> ( K - 1 ) e. NN ) ) ) ) |
| 62 | 28 61 | sylbir | |- ( -. M = K -> ( M <_ K -> ( M = 1 -> ( ( K e. NN0 /\ M e. NN0 ) -> ( K - 1 ) e. NN ) ) ) ) |
| 63 | 62 | com23 | |- ( -. M = K -> ( M = 1 -> ( M <_ K -> ( ( K e. NN0 /\ M e. NN0 ) -> ( K - 1 ) e. NN ) ) ) ) |
| 64 | 63 | com14 | |- ( ( K e. NN0 /\ M e. NN0 ) -> ( M = 1 -> ( M <_ K -> ( -. M = K -> ( K - 1 ) e. NN ) ) ) ) |
| 65 | 64 | ex | |- ( K e. NN0 -> ( M e. NN0 -> ( M = 1 -> ( M <_ K -> ( -. M = K -> ( K - 1 ) e. NN ) ) ) ) ) |
| 66 | 65 | com14 | |- ( M <_ K -> ( M e. NN0 -> ( M = 1 -> ( K e. NN0 -> ( -. M = K -> ( K - 1 ) e. NN ) ) ) ) ) |
| 67 | 66 | com13 | |- ( M = 1 -> ( M e. NN0 -> ( M <_ K -> ( K e. NN0 -> ( -. M = K -> ( K - 1 ) e. NN ) ) ) ) ) |
| 68 | 30 | ad2antlr | |- ( ( ( ( M - 1 ) e. NN /\ M e. NN0 ) /\ K e. NN0 ) -> M e. RR ) |
| 69 | 32 | adantl | |- ( ( ( ( M - 1 ) e. NN /\ M e. NN0 ) /\ K e. NN0 ) -> K e. RR ) |
| 70 | 1red | |- ( ( ( ( M - 1 ) e. NN /\ M e. NN0 ) /\ K e. NN0 ) -> 1 e. RR ) |
|
| 71 | 68 69 70 | lesub1d | |- ( ( ( ( M - 1 ) e. NN /\ M e. NN0 ) /\ K e. NN0 ) -> ( M <_ K <-> ( M - 1 ) <_ ( K - 1 ) ) ) |
| 72 | 3 | ad2antlr | |- ( ( ( ( ( M - 1 ) e. NN /\ M e. NN0 ) /\ K e. NN0 ) /\ ( M - 1 ) <_ ( K - 1 ) ) -> K e. ZZ ) |
| 73 | 1zzd | |- ( ( ( ( ( M - 1 ) e. NN /\ M e. NN0 ) /\ K e. NN0 ) /\ ( M - 1 ) <_ ( K - 1 ) ) -> 1 e. ZZ ) |
|
| 74 | 72 73 | zsubcld | |- ( ( ( ( ( M - 1 ) e. NN /\ M e. NN0 ) /\ K e. NN0 ) /\ ( M - 1 ) <_ ( K - 1 ) ) -> ( K - 1 ) e. ZZ ) |
| 75 | nngt0 | |- ( ( M - 1 ) e. NN -> 0 < ( M - 1 ) ) |
|
| 76 | 0red | |- ( ( M e. NN0 /\ K e. NN0 ) -> 0 e. RR ) |
|
| 77 | peano2rem | |- ( M e. RR -> ( M - 1 ) e. RR ) |
|
| 78 | 30 77 | syl | |- ( M e. NN0 -> ( M - 1 ) e. RR ) |
| 79 | 78 | adantr | |- ( ( M e. NN0 /\ K e. NN0 ) -> ( M - 1 ) e. RR ) |
| 80 | peano2rem | |- ( K e. RR -> ( K - 1 ) e. RR ) |
|
| 81 | 32 80 | syl | |- ( K e. NN0 -> ( K - 1 ) e. RR ) |
| 82 | 81 | adantl | |- ( ( M e. NN0 /\ K e. NN0 ) -> ( K - 1 ) e. RR ) |
| 83 | ltletr | |- ( ( 0 e. RR /\ ( M - 1 ) e. RR /\ ( K - 1 ) e. RR ) -> ( ( 0 < ( M - 1 ) /\ ( M - 1 ) <_ ( K - 1 ) ) -> 0 < ( K - 1 ) ) ) |
|
| 84 | 76 79 82 83 | syl3anc | |- ( ( M e. NN0 /\ K e. NN0 ) -> ( ( 0 < ( M - 1 ) /\ ( M - 1 ) <_ ( K - 1 ) ) -> 0 < ( K - 1 ) ) ) |
| 85 | 84 | ex | |- ( M e. NN0 -> ( K e. NN0 -> ( ( 0 < ( M - 1 ) /\ ( M - 1 ) <_ ( K - 1 ) ) -> 0 < ( K - 1 ) ) ) ) |
| 86 | 85 | com13 | |- ( ( 0 < ( M - 1 ) /\ ( M - 1 ) <_ ( K - 1 ) ) -> ( K e. NN0 -> ( M e. NN0 -> 0 < ( K - 1 ) ) ) ) |
| 87 | 86 | ex | |- ( 0 < ( M - 1 ) -> ( ( M - 1 ) <_ ( K - 1 ) -> ( K e. NN0 -> ( M e. NN0 -> 0 < ( K - 1 ) ) ) ) ) |
| 88 | 87 | com24 | |- ( 0 < ( M - 1 ) -> ( M e. NN0 -> ( K e. NN0 -> ( ( M - 1 ) <_ ( K - 1 ) -> 0 < ( K - 1 ) ) ) ) ) |
| 89 | 75 88 | syl | |- ( ( M - 1 ) e. NN -> ( M e. NN0 -> ( K e. NN0 -> ( ( M - 1 ) <_ ( K - 1 ) -> 0 < ( K - 1 ) ) ) ) ) |
| 90 | 89 | imp41 | |- ( ( ( ( ( M - 1 ) e. NN /\ M e. NN0 ) /\ K e. NN0 ) /\ ( M - 1 ) <_ ( K - 1 ) ) -> 0 < ( K - 1 ) ) |
| 91 | 74 90 50 | sylanbrc | |- ( ( ( ( ( M - 1 ) e. NN /\ M e. NN0 ) /\ K e. NN0 ) /\ ( M - 1 ) <_ ( K - 1 ) ) -> ( K - 1 ) e. NN ) |
| 92 | 91 | a1d | |- ( ( ( ( ( M - 1 ) e. NN /\ M e. NN0 ) /\ K e. NN0 ) /\ ( M - 1 ) <_ ( K - 1 ) ) -> ( -. M = K -> ( K - 1 ) e. NN ) ) |
| 93 | 92 | ex | |- ( ( ( ( M - 1 ) e. NN /\ M e. NN0 ) /\ K e. NN0 ) -> ( ( M - 1 ) <_ ( K - 1 ) -> ( -. M = K -> ( K - 1 ) e. NN ) ) ) |
| 94 | 71 93 | sylbid | |- ( ( ( ( M - 1 ) e. NN /\ M e. NN0 ) /\ K e. NN0 ) -> ( M <_ K -> ( -. M = K -> ( K - 1 ) e. NN ) ) ) |
| 95 | 94 | ex | |- ( ( ( M - 1 ) e. NN /\ M e. NN0 ) -> ( K e. NN0 -> ( M <_ K -> ( -. M = K -> ( K - 1 ) e. NN ) ) ) ) |
| 96 | 95 | com23 | |- ( ( ( M - 1 ) e. NN /\ M e. NN0 ) -> ( M <_ K -> ( K e. NN0 -> ( -. M = K -> ( K - 1 ) e. NN ) ) ) ) |
| 97 | 96 | ex | |- ( ( M - 1 ) e. NN -> ( M e. NN0 -> ( M <_ K -> ( K e. NN0 -> ( -. M = K -> ( K - 1 ) e. NN ) ) ) ) ) |
| 98 | 67 97 | jaoi | |- ( ( M = 1 \/ ( M - 1 ) e. NN ) -> ( M e. NN0 -> ( M <_ K -> ( K e. NN0 -> ( -. M = K -> ( K - 1 ) e. NN ) ) ) ) ) |
| 99 | 27 98 | syl | |- ( M e. NN -> ( M e. NN0 -> ( M <_ K -> ( K e. NN0 -> ( -. M = K -> ( K - 1 ) e. NN ) ) ) ) ) |
| 100 | 13 99 | sylbir | |- ( ( M e. NN0 /\ M =/= 0 ) -> ( M e. NN0 -> ( M <_ K -> ( K e. NN0 -> ( -. M = K -> ( K - 1 ) e. NN ) ) ) ) ) |
| 101 | 100 | ex | |- ( M e. NN0 -> ( M =/= 0 -> ( M e. NN0 -> ( M <_ K -> ( K e. NN0 -> ( -. M = K -> ( K - 1 ) e. NN ) ) ) ) ) ) |
| 102 | 101 | pm2.43a | |- ( M e. NN0 -> ( M =/= 0 -> ( M <_ K -> ( K e. NN0 -> ( -. M = K -> ( K - 1 ) e. NN ) ) ) ) ) |
| 103 | 102 | com24 | |- ( M e. NN0 -> ( K e. NN0 -> ( M <_ K -> ( M =/= 0 -> ( -. M = K -> ( K - 1 ) e. NN ) ) ) ) ) |
| 104 | 103 | 3imp | |- ( ( M e. NN0 /\ K e. NN0 /\ M <_ K ) -> ( M =/= 0 -> ( -. M = K -> ( K - 1 ) e. NN ) ) ) |
| 105 | 104 | com3l | |- ( M =/= 0 -> ( -. M = K -> ( ( M e. NN0 /\ K e. NN0 /\ M <_ K ) -> ( K - 1 ) e. NN ) ) ) |
| 106 | 14 105 | sylbir | |- ( -. M = 0 -> ( -. M = K -> ( ( M e. NN0 /\ K e. NN0 /\ M <_ K ) -> ( K - 1 ) e. NN ) ) ) |
| 107 | 106 | imp | |- ( ( -. M = 0 /\ -. M = K ) -> ( ( M e. NN0 /\ K e. NN0 /\ M <_ K ) -> ( K - 1 ) e. NN ) ) |
| 108 | 26 107 | sylbi | |- ( -. ( M = 0 \/ M = K ) -> ( ( M e. NN0 /\ K e. NN0 /\ M <_ K ) -> ( K - 1 ) e. NN ) ) |
| 109 | 108 | com12 | |- ( ( M e. NN0 /\ K e. NN0 /\ M <_ K ) -> ( -. ( M = 0 \/ M = K ) -> ( K - 1 ) e. NN ) ) |
| 110 | 109 | con1d | |- ( ( M e. NN0 /\ K e. NN0 /\ M <_ K ) -> ( -. ( K - 1 ) e. NN -> ( M = 0 \/ M = K ) ) ) |
| 111 | 110 | com12 | |- ( -. ( K - 1 ) e. NN -> ( ( M e. NN0 /\ K e. NN0 /\ M <_ K ) -> ( M = 0 \/ M = K ) ) ) |
| 112 | 30 | adantr | |- ( ( M e. NN0 /\ K e. NN0 ) -> M e. RR ) |
| 113 | 32 | adantl | |- ( ( M e. NN0 /\ K e. NN0 ) -> K e. RR ) |
| 114 | 1red | |- ( ( M e. NN0 /\ K e. NN0 ) -> 1 e. RR ) |
|
| 115 | 112 113 114 | 3jca | |- ( ( M e. NN0 /\ K e. NN0 ) -> ( M e. RR /\ K e. RR /\ 1 e. RR ) ) |
| 116 | 115 | 3adant3 | |- ( ( M e. NN0 /\ K e. NN0 /\ M <_ K ) -> ( M e. RR /\ K e. RR /\ 1 e. RR ) ) |
| 117 | ltsub1 | |- ( ( M e. RR /\ K e. RR /\ 1 e. RR ) -> ( M < K <-> ( M - 1 ) < ( K - 1 ) ) ) |
|
| 118 | 116 117 | syl | |- ( ( M e. NN0 /\ K e. NN0 /\ M <_ K ) -> ( M < K <-> ( M - 1 ) < ( K - 1 ) ) ) |
| 119 | 118 | bicomd | |- ( ( M e. NN0 /\ K e. NN0 /\ M <_ K ) -> ( ( M - 1 ) < ( K - 1 ) <-> M < K ) ) |
| 120 | 119 | notbid | |- ( ( M e. NN0 /\ K e. NN0 /\ M <_ K ) -> ( -. ( M - 1 ) < ( K - 1 ) <-> -. M < K ) ) |
| 121 | eqlelt | |- ( ( M e. RR /\ K e. RR ) -> ( M = K <-> ( M <_ K /\ -. M < K ) ) ) |
|
| 122 | 30 32 121 | syl2an | |- ( ( M e. NN0 /\ K e. NN0 ) -> ( M = K <-> ( M <_ K /\ -. M < K ) ) ) |
| 123 | 122 | biimpar | |- ( ( ( M e. NN0 /\ K e. NN0 ) /\ ( M <_ K /\ -. M < K ) ) -> M = K ) |
| 124 | 123 | olcd | |- ( ( ( M e. NN0 /\ K e. NN0 ) /\ ( M <_ K /\ -. M < K ) ) -> ( M = 0 \/ M = K ) ) |
| 125 | 124 | exp43 | |- ( M e. NN0 -> ( K e. NN0 -> ( M <_ K -> ( -. M < K -> ( M = 0 \/ M = K ) ) ) ) ) |
| 126 | 125 | 3imp | |- ( ( M e. NN0 /\ K e. NN0 /\ M <_ K ) -> ( -. M < K -> ( M = 0 \/ M = K ) ) ) |
| 127 | 120 126 | sylbid | |- ( ( M e. NN0 /\ K e. NN0 /\ M <_ K ) -> ( -. ( M - 1 ) < ( K - 1 ) -> ( M = 0 \/ M = K ) ) ) |
| 128 | 127 | com12 | |- ( -. ( M - 1 ) < ( K - 1 ) -> ( ( M e. NN0 /\ K e. NN0 /\ M <_ K ) -> ( M = 0 \/ M = K ) ) ) |
| 129 | 25 111 128 | 3jaoi | |- ( ( -. ( M - 1 ) e. NN0 \/ -. ( K - 1 ) e. NN \/ -. ( M - 1 ) < ( K - 1 ) ) -> ( ( M e. NN0 /\ K e. NN0 /\ M <_ K ) -> ( M = 0 \/ M = K ) ) ) |
| 130 | 12 129 | sylbi | |- ( -. ( ( M - 1 ) e. NN0 /\ ( K - 1 ) e. NN /\ ( M - 1 ) < ( K - 1 ) ) -> ( ( M e. NN0 /\ K e. NN0 /\ M <_ K ) -> ( M = 0 \/ M = K ) ) ) |
| 131 | 130 | com12 | |- ( ( M e. NN0 /\ K e. NN0 /\ M <_ K ) -> ( -. ( ( M - 1 ) e. NN0 /\ ( K - 1 ) e. NN /\ ( M - 1 ) < ( K - 1 ) ) -> ( M = 0 \/ M = K ) ) ) |
| 132 | 11 131 | sylbid | |- ( ( M e. NN0 /\ K e. NN0 /\ M <_ K ) -> ( -. ( M - 1 ) e. ( 0 ..^ ( K - 1 ) ) -> ( M = 0 \/ M = K ) ) ) |
| 133 | 8 132 | sylbid | |- ( ( M e. NN0 /\ K e. NN0 /\ M <_ K ) -> ( -. M e. ( 1 ..^ K ) -> ( M = 0 \/ M = K ) ) ) |
| 134 | 1 133 | sylbi | |- ( M e. ( 0 ... K ) -> ( -. M e. ( 1 ..^ K ) -> ( M = 0 \/ M = K ) ) ) |
| 135 | 134 | imp | |- ( ( M e. ( 0 ... K ) /\ -. M e. ( 1 ..^ K ) ) -> ( M = 0 \/ M = K ) ) |