This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem imp41

Description: An importation inference. (Contributed by NM, 26-Apr-1994)

Ref Expression
Hypothesis imp4.1
|- ( ph -> ( ps -> ( ch -> ( th -> ta ) ) ) )
Assertion imp41
|- ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) -> ta )

Proof

Step Hyp Ref Expression
1 imp4.1
 |-  ( ph -> ( ps -> ( ch -> ( th -> ta ) ) ) )
2 1 imp
 |-  ( ( ph /\ ps ) -> ( ch -> ( th -> ta ) ) )
3 2 imp31
 |-  ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) -> ta )