This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer is a member of a 1-based finite set of sequential integers iff its predecessor is a member of the corresponding 0-based set. (Contributed by Mario Carneiro, 27-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfzom1b | |- ( ( K e. ZZ /\ N e. ZZ ) -> ( K e. ( 1 ..^ N ) <-> ( K - 1 ) e. ( 0 ..^ ( N - 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2zm | |- ( N e. ZZ -> ( N - 1 ) e. ZZ ) |
|
| 2 | elfzm1b | |- ( ( K e. ZZ /\ ( N - 1 ) e. ZZ ) -> ( K e. ( 1 ... ( N - 1 ) ) <-> ( K - 1 ) e. ( 0 ... ( ( N - 1 ) - 1 ) ) ) ) |
|
| 3 | 1 2 | sylan2 | |- ( ( K e. ZZ /\ N e. ZZ ) -> ( K e. ( 1 ... ( N - 1 ) ) <-> ( K - 1 ) e. ( 0 ... ( ( N - 1 ) - 1 ) ) ) ) |
| 4 | fzoval | |- ( N e. ZZ -> ( 1 ..^ N ) = ( 1 ... ( N - 1 ) ) ) |
|
| 5 | 4 | adantl | |- ( ( K e. ZZ /\ N e. ZZ ) -> ( 1 ..^ N ) = ( 1 ... ( N - 1 ) ) ) |
| 6 | 5 | eleq2d | |- ( ( K e. ZZ /\ N e. ZZ ) -> ( K e. ( 1 ..^ N ) <-> K e. ( 1 ... ( N - 1 ) ) ) ) |
| 7 | 1 | adantl | |- ( ( K e. ZZ /\ N e. ZZ ) -> ( N - 1 ) e. ZZ ) |
| 8 | fzoval | |- ( ( N - 1 ) e. ZZ -> ( 0 ..^ ( N - 1 ) ) = ( 0 ... ( ( N - 1 ) - 1 ) ) ) |
|
| 9 | 7 8 | syl | |- ( ( K e. ZZ /\ N e. ZZ ) -> ( 0 ..^ ( N - 1 ) ) = ( 0 ... ( ( N - 1 ) - 1 ) ) ) |
| 10 | 9 | eleq2d | |- ( ( K e. ZZ /\ N e. ZZ ) -> ( ( K - 1 ) e. ( 0 ..^ ( N - 1 ) ) <-> ( K - 1 ) e. ( 0 ... ( ( N - 1 ) - 1 ) ) ) ) |
| 11 | 3 6 10 | 3bitr4d | |- ( ( K e. ZZ /\ N e. ZZ ) -> ( K e. ( 1 ..^ N ) <-> ( K - 1 ) e. ( 0 ..^ ( N - 1 ) ) ) ) |