This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A value in a finite set of sequential integers is a border value if it is not contained in the half-open integer range contained in the finite set of sequential integers. (Contributed by Alexander van der Vekens, 31-Oct-2017) (Revised by Thierry Arnoux, 22-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfznelfzo | ⊢ ( ( 𝑀 ∈ ( 0 ... 𝐾 ) ∧ ¬ 𝑀 ∈ ( 1 ..^ 𝐾 ) ) → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfz2nn0 | ⊢ ( 𝑀 ∈ ( 0 ... 𝐾 ) ↔ ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) ) | |
| 2 | nn0z | ⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℤ ) | |
| 3 | nn0z | ⊢ ( 𝐾 ∈ ℕ0 → 𝐾 ∈ ℤ ) | |
| 4 | 2 3 | anim12i | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ) ) |
| 5 | 4 | 3adant3 | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ) ) |
| 6 | elfzom1b | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( 𝑀 ∈ ( 1 ..^ 𝐾 ) ↔ ( 𝑀 − 1 ) ∈ ( 0 ..^ ( 𝐾 − 1 ) ) ) ) | |
| 7 | 5 6 | syl | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( 𝑀 ∈ ( 1 ..^ 𝐾 ) ↔ ( 𝑀 − 1 ) ∈ ( 0 ..^ ( 𝐾 − 1 ) ) ) ) |
| 8 | 7 | notbid | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( ¬ 𝑀 ∈ ( 1 ..^ 𝐾 ) ↔ ¬ ( 𝑀 − 1 ) ∈ ( 0 ..^ ( 𝐾 − 1 ) ) ) ) |
| 9 | elfzo0 | ⊢ ( ( 𝑀 − 1 ) ∈ ( 0 ..^ ( 𝐾 − 1 ) ) ↔ ( ( 𝑀 − 1 ) ∈ ℕ0 ∧ ( 𝐾 − 1 ) ∈ ℕ ∧ ( 𝑀 − 1 ) < ( 𝐾 − 1 ) ) ) | |
| 10 | 9 | a1i | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( ( 𝑀 − 1 ) ∈ ( 0 ..^ ( 𝐾 − 1 ) ) ↔ ( ( 𝑀 − 1 ) ∈ ℕ0 ∧ ( 𝐾 − 1 ) ∈ ℕ ∧ ( 𝑀 − 1 ) < ( 𝐾 − 1 ) ) ) ) |
| 11 | 10 | notbid | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( ¬ ( 𝑀 − 1 ) ∈ ( 0 ..^ ( 𝐾 − 1 ) ) ↔ ¬ ( ( 𝑀 − 1 ) ∈ ℕ0 ∧ ( 𝐾 − 1 ) ∈ ℕ ∧ ( 𝑀 − 1 ) < ( 𝐾 − 1 ) ) ) ) |
| 12 | 3ianor | ⊢ ( ¬ ( ( 𝑀 − 1 ) ∈ ℕ0 ∧ ( 𝐾 − 1 ) ∈ ℕ ∧ ( 𝑀 − 1 ) < ( 𝐾 − 1 ) ) ↔ ( ¬ ( 𝑀 − 1 ) ∈ ℕ0 ∨ ¬ ( 𝐾 − 1 ) ∈ ℕ ∨ ¬ ( 𝑀 − 1 ) < ( 𝐾 − 1 ) ) ) | |
| 13 | elnnne0 | ⊢ ( 𝑀 ∈ ℕ ↔ ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≠ 0 ) ) | |
| 14 | df-ne | ⊢ ( 𝑀 ≠ 0 ↔ ¬ 𝑀 = 0 ) | |
| 15 | 14 | anbi2i | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≠ 0 ) ↔ ( 𝑀 ∈ ℕ0 ∧ ¬ 𝑀 = 0 ) ) |
| 16 | 13 15 | bitr2i | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ ¬ 𝑀 = 0 ) ↔ 𝑀 ∈ ℕ ) |
| 17 | nnm1nn0 | ⊢ ( 𝑀 ∈ ℕ → ( 𝑀 − 1 ) ∈ ℕ0 ) | |
| 18 | 16 17 | sylbi | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ ¬ 𝑀 = 0 ) → ( 𝑀 − 1 ) ∈ ℕ0 ) |
| 19 | 18 | ex | ⊢ ( 𝑀 ∈ ℕ0 → ( ¬ 𝑀 = 0 → ( 𝑀 − 1 ) ∈ ℕ0 ) ) |
| 20 | 19 | con1d | ⊢ ( 𝑀 ∈ ℕ0 → ( ¬ ( 𝑀 − 1 ) ∈ ℕ0 → 𝑀 = 0 ) ) |
| 21 | 20 | imp | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ ¬ ( 𝑀 − 1 ) ∈ ℕ0 ) → 𝑀 = 0 ) |
| 22 | 21 | orcd | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ ¬ ( 𝑀 − 1 ) ∈ ℕ0 ) → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) |
| 23 | 22 | ex | ⊢ ( 𝑀 ∈ ℕ0 → ( ¬ ( 𝑀 − 1 ) ∈ ℕ0 → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) |
| 24 | 23 | 3ad2ant1 | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( ¬ ( 𝑀 − 1 ) ∈ ℕ0 → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) |
| 25 | 24 | com12 | ⊢ ( ¬ ( 𝑀 − 1 ) ∈ ℕ0 → ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) |
| 26 | ioran | ⊢ ( ¬ ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ↔ ( ¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾 ) ) | |
| 27 | nn1m1nn | ⊢ ( 𝑀 ∈ ℕ → ( 𝑀 = 1 ∨ ( 𝑀 − 1 ) ∈ ℕ ) ) | |
| 28 | df-ne | ⊢ ( 𝑀 ≠ 𝐾 ↔ ¬ 𝑀 = 𝐾 ) | |
| 29 | necom | ⊢ ( 𝑀 ≠ 𝐾 ↔ 𝐾 ≠ 𝑀 ) | |
| 30 | nn0re | ⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℝ ) | |
| 31 | 30 | ad2antlr | ⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑀 ≤ 𝐾 ) → 𝑀 ∈ ℝ ) |
| 32 | nn0re | ⊢ ( 𝐾 ∈ ℕ0 → 𝐾 ∈ ℝ ) | |
| 33 | 32 | adantr | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → 𝐾 ∈ ℝ ) |
| 34 | 33 | adantr | ⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑀 ≤ 𝐾 ) → 𝐾 ∈ ℝ ) |
| 35 | simpr | ⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑀 ≤ 𝐾 ) → 𝑀 ≤ 𝐾 ) | |
| 36 | 31 34 35 | leltned | ⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑀 ≤ 𝐾 ) → ( 𝑀 < 𝐾 ↔ 𝐾 ≠ 𝑀 ) ) |
| 37 | 29 36 | bitr4id | ⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑀 ≤ 𝐾 ) → ( 𝑀 ≠ 𝐾 ↔ 𝑀 < 𝐾 ) ) |
| 38 | 37 | adantr | ⊢ ( ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑀 ≤ 𝐾 ) ∧ 𝑀 = 1 ) → ( 𝑀 ≠ 𝐾 ↔ 𝑀 < 𝐾 ) ) |
| 39 | breq1 | ⊢ ( 𝑀 = 1 → ( 𝑀 < 𝐾 ↔ 1 < 𝐾 ) ) | |
| 40 | 39 | biimpa | ⊢ ( ( 𝑀 = 1 ∧ 𝑀 < 𝐾 ) → 1 < 𝐾 ) |
| 41 | 1red | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → 1 ∈ ℝ ) | |
| 42 | 41 33 41 | ltsub1d | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 1 < 𝐾 ↔ ( 1 − 1 ) < ( 𝐾 − 1 ) ) ) |
| 43 | 1m1e0 | ⊢ ( 1 − 1 ) = 0 | |
| 44 | 43 | breq1i | ⊢ ( ( 1 − 1 ) < ( 𝐾 − 1 ) ↔ 0 < ( 𝐾 − 1 ) ) |
| 45 | 1zzd | ⊢ ( 𝐾 ∈ ℕ0 → 1 ∈ ℤ ) | |
| 46 | 3 45 | zsubcld | ⊢ ( 𝐾 ∈ ℕ0 → ( 𝐾 − 1 ) ∈ ℤ ) |
| 47 | 46 | adantr | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝐾 − 1 ) ∈ ℤ ) |
| 48 | 47 | adantr | ⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 0 < ( 𝐾 − 1 ) ) → ( 𝐾 − 1 ) ∈ ℤ ) |
| 49 | simpr | ⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 0 < ( 𝐾 − 1 ) ) → 0 < ( 𝐾 − 1 ) ) | |
| 50 | elnnz | ⊢ ( ( 𝐾 − 1 ) ∈ ℕ ↔ ( ( 𝐾 − 1 ) ∈ ℤ ∧ 0 < ( 𝐾 − 1 ) ) ) | |
| 51 | 48 49 50 | sylanbrc | ⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 0 < ( 𝐾 − 1 ) ) → ( 𝐾 − 1 ) ∈ ℕ ) |
| 52 | 51 | ex | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 0 < ( 𝐾 − 1 ) → ( 𝐾 − 1 ) ∈ ℕ ) ) |
| 53 | 44 52 | biimtrid | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( ( 1 − 1 ) < ( 𝐾 − 1 ) → ( 𝐾 − 1 ) ∈ ℕ ) ) |
| 54 | 42 53 | sylbid | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 1 < 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) |
| 55 | 40 54 | syl5 | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑀 = 1 ∧ 𝑀 < 𝐾 ) → ( 𝐾 − 1 ) ∈ ℕ ) ) |
| 56 | 55 | expd | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝑀 = 1 → ( 𝑀 < 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) |
| 57 | 56 | adantr | ⊢ ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑀 ≤ 𝐾 ) → ( 𝑀 = 1 → ( 𝑀 < 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) |
| 58 | 57 | imp | ⊢ ( ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑀 ≤ 𝐾 ) ∧ 𝑀 = 1 ) → ( 𝑀 < 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) |
| 59 | 38 58 | sylbid | ⊢ ( ( ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ 𝑀 ≤ 𝐾 ) ∧ 𝑀 = 1 ) → ( 𝑀 ≠ 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) |
| 60 | 59 | exp31 | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝑀 ≤ 𝐾 → ( 𝑀 = 1 → ( 𝑀 ≠ 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) |
| 61 | 60 | com14 | ⊢ ( 𝑀 ≠ 𝐾 → ( 𝑀 ≤ 𝐾 → ( 𝑀 = 1 → ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) |
| 62 | 28 61 | sylbir | ⊢ ( ¬ 𝑀 = 𝐾 → ( 𝑀 ≤ 𝐾 → ( 𝑀 = 1 → ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) |
| 63 | 62 | com23 | ⊢ ( ¬ 𝑀 = 𝐾 → ( 𝑀 = 1 → ( 𝑀 ≤ 𝐾 → ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) |
| 64 | 63 | com14 | ⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝑀 = 1 → ( 𝑀 ≤ 𝐾 → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) |
| 65 | 64 | ex | ⊢ ( 𝐾 ∈ ℕ0 → ( 𝑀 ∈ ℕ0 → ( 𝑀 = 1 → ( 𝑀 ≤ 𝐾 → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) ) |
| 66 | 65 | com14 | ⊢ ( 𝑀 ≤ 𝐾 → ( 𝑀 ∈ ℕ0 → ( 𝑀 = 1 → ( 𝐾 ∈ ℕ0 → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) ) |
| 67 | 66 | com13 | ⊢ ( 𝑀 = 1 → ( 𝑀 ∈ ℕ0 → ( 𝑀 ≤ 𝐾 → ( 𝐾 ∈ ℕ0 → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) ) |
| 68 | 30 | ad2antlr | ⊢ ( ( ( ( 𝑀 − 1 ) ∈ ℕ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝐾 ∈ ℕ0 ) → 𝑀 ∈ ℝ ) |
| 69 | 32 | adantl | ⊢ ( ( ( ( 𝑀 − 1 ) ∈ ℕ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝐾 ∈ ℕ0 ) → 𝐾 ∈ ℝ ) |
| 70 | 1red | ⊢ ( ( ( ( 𝑀 − 1 ) ∈ ℕ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝐾 ∈ ℕ0 ) → 1 ∈ ℝ ) | |
| 71 | 68 69 70 | lesub1d | ⊢ ( ( ( ( 𝑀 − 1 ) ∈ ℕ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝐾 ∈ ℕ0 ) → ( 𝑀 ≤ 𝐾 ↔ ( 𝑀 − 1 ) ≤ ( 𝐾 − 1 ) ) ) |
| 72 | 3 | ad2antlr | ⊢ ( ( ( ( ( 𝑀 − 1 ) ∈ ℕ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑀 − 1 ) ≤ ( 𝐾 − 1 ) ) → 𝐾 ∈ ℤ ) |
| 73 | 1zzd | ⊢ ( ( ( ( ( 𝑀 − 1 ) ∈ ℕ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑀 − 1 ) ≤ ( 𝐾 − 1 ) ) → 1 ∈ ℤ ) | |
| 74 | 72 73 | zsubcld | ⊢ ( ( ( ( ( 𝑀 − 1 ) ∈ ℕ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑀 − 1 ) ≤ ( 𝐾 − 1 ) ) → ( 𝐾 − 1 ) ∈ ℤ ) |
| 75 | nngt0 | ⊢ ( ( 𝑀 − 1 ) ∈ ℕ → 0 < ( 𝑀 − 1 ) ) | |
| 76 | 0red | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → 0 ∈ ℝ ) | |
| 77 | peano2rem | ⊢ ( 𝑀 ∈ ℝ → ( 𝑀 − 1 ) ∈ ℝ ) | |
| 78 | 30 77 | syl | ⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 − 1 ) ∈ ℝ ) |
| 79 | 78 | adantr | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑀 − 1 ) ∈ ℝ ) |
| 80 | peano2rem | ⊢ ( 𝐾 ∈ ℝ → ( 𝐾 − 1 ) ∈ ℝ ) | |
| 81 | 32 80 | syl | ⊢ ( 𝐾 ∈ ℕ0 → ( 𝐾 − 1 ) ∈ ℝ ) |
| 82 | 81 | adantl | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( 𝐾 − 1 ) ∈ ℝ ) |
| 83 | ltletr | ⊢ ( ( 0 ∈ ℝ ∧ ( 𝑀 − 1 ) ∈ ℝ ∧ ( 𝐾 − 1 ) ∈ ℝ ) → ( ( 0 < ( 𝑀 − 1 ) ∧ ( 𝑀 − 1 ) ≤ ( 𝐾 − 1 ) ) → 0 < ( 𝐾 − 1 ) ) ) | |
| 84 | 76 79 82 83 | syl3anc | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( ( 0 < ( 𝑀 − 1 ) ∧ ( 𝑀 − 1 ) ≤ ( 𝐾 − 1 ) ) → 0 < ( 𝐾 − 1 ) ) ) |
| 85 | 84 | ex | ⊢ ( 𝑀 ∈ ℕ0 → ( 𝐾 ∈ ℕ0 → ( ( 0 < ( 𝑀 − 1 ) ∧ ( 𝑀 − 1 ) ≤ ( 𝐾 − 1 ) ) → 0 < ( 𝐾 − 1 ) ) ) ) |
| 86 | 85 | com13 | ⊢ ( ( 0 < ( 𝑀 − 1 ) ∧ ( 𝑀 − 1 ) ≤ ( 𝐾 − 1 ) ) → ( 𝐾 ∈ ℕ0 → ( 𝑀 ∈ ℕ0 → 0 < ( 𝐾 − 1 ) ) ) ) |
| 87 | 86 | ex | ⊢ ( 0 < ( 𝑀 − 1 ) → ( ( 𝑀 − 1 ) ≤ ( 𝐾 − 1 ) → ( 𝐾 ∈ ℕ0 → ( 𝑀 ∈ ℕ0 → 0 < ( 𝐾 − 1 ) ) ) ) ) |
| 88 | 87 | com24 | ⊢ ( 0 < ( 𝑀 − 1 ) → ( 𝑀 ∈ ℕ0 → ( 𝐾 ∈ ℕ0 → ( ( 𝑀 − 1 ) ≤ ( 𝐾 − 1 ) → 0 < ( 𝐾 − 1 ) ) ) ) ) |
| 89 | 75 88 | syl | ⊢ ( ( 𝑀 − 1 ) ∈ ℕ → ( 𝑀 ∈ ℕ0 → ( 𝐾 ∈ ℕ0 → ( ( 𝑀 − 1 ) ≤ ( 𝐾 − 1 ) → 0 < ( 𝐾 − 1 ) ) ) ) ) |
| 90 | 89 | imp41 | ⊢ ( ( ( ( ( 𝑀 − 1 ) ∈ ℕ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑀 − 1 ) ≤ ( 𝐾 − 1 ) ) → 0 < ( 𝐾 − 1 ) ) |
| 91 | 74 90 50 | sylanbrc | ⊢ ( ( ( ( ( 𝑀 − 1 ) ∈ ℕ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑀 − 1 ) ≤ ( 𝐾 − 1 ) ) → ( 𝐾 − 1 ) ∈ ℕ ) |
| 92 | 91 | a1d | ⊢ ( ( ( ( ( 𝑀 − 1 ) ∈ ℕ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑀 − 1 ) ≤ ( 𝐾 − 1 ) ) → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) |
| 93 | 92 | ex | ⊢ ( ( ( ( 𝑀 − 1 ) ∈ ℕ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝐾 ∈ ℕ0 ) → ( ( 𝑀 − 1 ) ≤ ( 𝐾 − 1 ) → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) |
| 94 | 71 93 | sylbid | ⊢ ( ( ( ( 𝑀 − 1 ) ∈ ℕ ∧ 𝑀 ∈ ℕ0 ) ∧ 𝐾 ∈ ℕ0 ) → ( 𝑀 ≤ 𝐾 → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) |
| 95 | 94 | ex | ⊢ ( ( ( 𝑀 − 1 ) ∈ ℕ ∧ 𝑀 ∈ ℕ0 ) → ( 𝐾 ∈ ℕ0 → ( 𝑀 ≤ 𝐾 → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) |
| 96 | 95 | com23 | ⊢ ( ( ( 𝑀 − 1 ) ∈ ℕ ∧ 𝑀 ∈ ℕ0 ) → ( 𝑀 ≤ 𝐾 → ( 𝐾 ∈ ℕ0 → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) |
| 97 | 96 | ex | ⊢ ( ( 𝑀 − 1 ) ∈ ℕ → ( 𝑀 ∈ ℕ0 → ( 𝑀 ≤ 𝐾 → ( 𝐾 ∈ ℕ0 → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) ) |
| 98 | 67 97 | jaoi | ⊢ ( ( 𝑀 = 1 ∨ ( 𝑀 − 1 ) ∈ ℕ ) → ( 𝑀 ∈ ℕ0 → ( 𝑀 ≤ 𝐾 → ( 𝐾 ∈ ℕ0 → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) ) |
| 99 | 27 98 | syl | ⊢ ( 𝑀 ∈ ℕ → ( 𝑀 ∈ ℕ0 → ( 𝑀 ≤ 𝐾 → ( 𝐾 ∈ ℕ0 → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) ) |
| 100 | 13 99 | sylbir | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≠ 0 ) → ( 𝑀 ∈ ℕ0 → ( 𝑀 ≤ 𝐾 → ( 𝐾 ∈ ℕ0 → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) ) |
| 101 | 100 | ex | ⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 ≠ 0 → ( 𝑀 ∈ ℕ0 → ( 𝑀 ≤ 𝐾 → ( 𝐾 ∈ ℕ0 → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) ) ) |
| 102 | 101 | pm2.43a | ⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 ≠ 0 → ( 𝑀 ≤ 𝐾 → ( 𝐾 ∈ ℕ0 → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) ) |
| 103 | 102 | com24 | ⊢ ( 𝑀 ∈ ℕ0 → ( 𝐾 ∈ ℕ0 → ( 𝑀 ≤ 𝐾 → ( 𝑀 ≠ 0 → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) ) ) |
| 104 | 103 | 3imp | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( 𝑀 ≠ 0 → ( ¬ 𝑀 = 𝐾 → ( 𝐾 − 1 ) ∈ ℕ ) ) ) |
| 105 | 104 | com3l | ⊢ ( 𝑀 ≠ 0 → ( ¬ 𝑀 = 𝐾 → ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( 𝐾 − 1 ) ∈ ℕ ) ) ) |
| 106 | 14 105 | sylbir | ⊢ ( ¬ 𝑀 = 0 → ( ¬ 𝑀 = 𝐾 → ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( 𝐾 − 1 ) ∈ ℕ ) ) ) |
| 107 | 106 | imp | ⊢ ( ( ¬ 𝑀 = 0 ∧ ¬ 𝑀 = 𝐾 ) → ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( 𝐾 − 1 ) ∈ ℕ ) ) |
| 108 | 26 107 | sylbi | ⊢ ( ¬ ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) → ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( 𝐾 − 1 ) ∈ ℕ ) ) |
| 109 | 108 | com12 | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( ¬ ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) → ( 𝐾 − 1 ) ∈ ℕ ) ) |
| 110 | 109 | con1d | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( ¬ ( 𝐾 − 1 ) ∈ ℕ → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) |
| 111 | 110 | com12 | ⊢ ( ¬ ( 𝐾 − 1 ) ∈ ℕ → ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) |
| 112 | 30 | adantr | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → 𝑀 ∈ ℝ ) |
| 113 | 32 | adantl | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → 𝐾 ∈ ℝ ) |
| 114 | 1red | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → 1 ∈ ℝ ) | |
| 115 | 112 113 114 | 3jca | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 1 ∈ ℝ ) ) |
| 116 | 115 | 3adant3 | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( 𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 1 ∈ ℝ ) ) |
| 117 | ltsub1 | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 𝑀 < 𝐾 ↔ ( 𝑀 − 1 ) < ( 𝐾 − 1 ) ) ) | |
| 118 | 116 117 | syl | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( 𝑀 < 𝐾 ↔ ( 𝑀 − 1 ) < ( 𝐾 − 1 ) ) ) |
| 119 | 118 | bicomd | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( ( 𝑀 − 1 ) < ( 𝐾 − 1 ) ↔ 𝑀 < 𝐾 ) ) |
| 120 | 119 | notbid | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( ¬ ( 𝑀 − 1 ) < ( 𝐾 − 1 ) ↔ ¬ 𝑀 < 𝐾 ) ) |
| 121 | eqlelt | ⊢ ( ( 𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ ) → ( 𝑀 = 𝐾 ↔ ( 𝑀 ≤ 𝐾 ∧ ¬ 𝑀 < 𝐾 ) ) ) | |
| 122 | 30 32 121 | syl2an | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) → ( 𝑀 = 𝐾 ↔ ( 𝑀 ≤ 𝐾 ∧ ¬ 𝑀 < 𝐾 ) ) ) |
| 123 | 122 | biimpar | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑀 ≤ 𝐾 ∧ ¬ 𝑀 < 𝐾 ) ) → 𝑀 = 𝐾 ) |
| 124 | 123 | olcd | ⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ) ∧ ( 𝑀 ≤ 𝐾 ∧ ¬ 𝑀 < 𝐾 ) ) → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) |
| 125 | 124 | exp43 | ⊢ ( 𝑀 ∈ ℕ0 → ( 𝐾 ∈ ℕ0 → ( 𝑀 ≤ 𝐾 → ( ¬ 𝑀 < 𝐾 → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) ) ) |
| 126 | 125 | 3imp | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( ¬ 𝑀 < 𝐾 → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) |
| 127 | 120 126 | sylbid | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( ¬ ( 𝑀 − 1 ) < ( 𝐾 − 1 ) → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) |
| 128 | 127 | com12 | ⊢ ( ¬ ( 𝑀 − 1 ) < ( 𝐾 − 1 ) → ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) |
| 129 | 25 111 128 | 3jaoi | ⊢ ( ( ¬ ( 𝑀 − 1 ) ∈ ℕ0 ∨ ¬ ( 𝐾 − 1 ) ∈ ℕ ∨ ¬ ( 𝑀 − 1 ) < ( 𝐾 − 1 ) ) → ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) |
| 130 | 12 129 | sylbi | ⊢ ( ¬ ( ( 𝑀 − 1 ) ∈ ℕ0 ∧ ( 𝐾 − 1 ) ∈ ℕ ∧ ( 𝑀 − 1 ) < ( 𝐾 − 1 ) ) → ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) |
| 131 | 130 | com12 | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( ¬ ( ( 𝑀 − 1 ) ∈ ℕ0 ∧ ( 𝐾 − 1 ) ∈ ℕ ∧ ( 𝑀 − 1 ) < ( 𝐾 − 1 ) ) → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) |
| 132 | 11 131 | sylbid | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( ¬ ( 𝑀 − 1 ) ∈ ( 0 ..^ ( 𝐾 − 1 ) ) → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) |
| 133 | 8 132 | sylbid | ⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝑀 ≤ 𝐾 ) → ( ¬ 𝑀 ∈ ( 1 ..^ 𝐾 ) → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) |
| 134 | 1 133 | sylbi | ⊢ ( 𝑀 ∈ ( 0 ... 𝐾 ) → ( ¬ 𝑀 ∈ ( 1 ..^ 𝐾 ) → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) ) |
| 135 | 134 | imp | ⊢ ( ( 𝑀 ∈ ( 0 ... 𝐾 ) ∧ ¬ 𝑀 ∈ ( 1 ..^ 𝐾 ) ) → ( 𝑀 = 0 ∨ 𝑀 = 𝐾 ) ) |