This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Negated triple conjunction expressed in terms of triple disjunction. (Contributed by Jeff Hankins, 15-Aug-2009) (Proof shortened by Andrew Salmon, 13-May-2011) Shorten with xchnxbir . (Revised by Wolf Lammen, 8-Apr-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 3ianor | |- ( -. ( ph /\ ps /\ ch ) <-> ( -. ph \/ -. ps \/ -. ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ianor | |- ( -. ( ph /\ ps ) <-> ( -. ph \/ -. ps ) ) |
|
| 2 | 1 | orbi1i | |- ( ( -. ( ph /\ ps ) \/ -. ch ) <-> ( ( -. ph \/ -. ps ) \/ -. ch ) ) |
| 3 | ianor | |- ( -. ( ( ph /\ ps ) /\ ch ) <-> ( -. ( ph /\ ps ) \/ -. ch ) ) |
|
| 4 | df-3an | |- ( ( ph /\ ps /\ ch ) <-> ( ( ph /\ ps ) /\ ch ) ) |
|
| 5 | 3 4 | xchnxbir | |- ( -. ( ph /\ ps /\ ch ) <-> ( -. ( ph /\ ps ) \/ -. ch ) ) |
| 6 | df-3or | |- ( ( -. ph \/ -. ps \/ -. ch ) <-> ( ( -. ph \/ -. ps ) \/ -. ch ) ) |
|
| 7 | 2 5 6 | 3bitr4i | |- ( -. ( ph /\ ps /\ ch ) <-> ( -. ph \/ -. ps \/ -. ch ) ) |