This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A value in a finite set of sequential integers is a border value if and only if it is not contained in the half-open integer range contained in the finite set of sequential integers. (Contributed by Alexander van der Vekens, 17-Jan-2018) (Revised by Thierry Arnoux, 22-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfznelfzob | |- ( M e. ( 0 ... K ) -> ( -. M e. ( 1 ..^ K ) <-> ( M = 0 \/ M = K ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfznelfzo | |- ( ( M e. ( 0 ... K ) /\ -. M e. ( 1 ..^ K ) ) -> ( M = 0 \/ M = K ) ) |
|
| 2 | 1 | ex | |- ( M e. ( 0 ... K ) -> ( -. M e. ( 1 ..^ K ) -> ( M = 0 \/ M = K ) ) ) |
| 3 | elfzole1 | |- ( M e. ( 1 ..^ K ) -> 1 <_ M ) |
|
| 4 | elfzolt2 | |- ( M e. ( 1 ..^ K ) -> M < K ) |
|
| 5 | elfzoel2 | |- ( M e. ( 1 ..^ K ) -> K e. ZZ ) |
|
| 6 | elfzoelz | |- ( M e. ( 1 ..^ K ) -> M e. ZZ ) |
|
| 7 | 0lt1 | |- 0 < 1 |
|
| 8 | breq1 | |- ( M = 0 -> ( M < 1 <-> 0 < 1 ) ) |
|
| 9 | 7 8 | mpbiri | |- ( M = 0 -> M < 1 ) |
| 10 | zre | |- ( M e. ZZ -> M e. RR ) |
|
| 11 | 10 | adantl | |- ( ( ( M < K /\ K e. ZZ ) /\ M e. ZZ ) -> M e. RR ) |
| 12 | 1red | |- ( ( ( M < K /\ K e. ZZ ) /\ M e. ZZ ) -> 1 e. RR ) |
|
| 13 | 11 12 | ltnled | |- ( ( ( M < K /\ K e. ZZ ) /\ M e. ZZ ) -> ( M < 1 <-> -. 1 <_ M ) ) |
| 14 | 9 13 | imbitrid | |- ( ( ( M < K /\ K e. ZZ ) /\ M e. ZZ ) -> ( M = 0 -> -. 1 <_ M ) ) |
| 15 | 14 | con2d | |- ( ( ( M < K /\ K e. ZZ ) /\ M e. ZZ ) -> ( 1 <_ M -> -. M = 0 ) ) |
| 16 | zre | |- ( K e. ZZ -> K e. RR ) |
|
| 17 | ltlen | |- ( ( M e. RR /\ K e. RR ) -> ( M < K <-> ( M <_ K /\ K =/= M ) ) ) |
|
| 18 | 10 16 17 | syl2anr | |- ( ( K e. ZZ /\ M e. ZZ ) -> ( M < K <-> ( M <_ K /\ K =/= M ) ) ) |
| 19 | necom | |- ( K =/= M <-> M =/= K ) |
|
| 20 | df-ne | |- ( M =/= K <-> -. M = K ) |
|
| 21 | 19 20 | sylbb | |- ( K =/= M -> -. M = K ) |
| 22 | 21 | adantl | |- ( ( M <_ K /\ K =/= M ) -> -. M = K ) |
| 23 | 18 22 | biimtrdi | |- ( ( K e. ZZ /\ M e. ZZ ) -> ( M < K -> -. M = K ) ) |
| 24 | 23 | ex | |- ( K e. ZZ -> ( M e. ZZ -> ( M < K -> -. M = K ) ) ) |
| 25 | 24 | com23 | |- ( K e. ZZ -> ( M < K -> ( M e. ZZ -> -. M = K ) ) ) |
| 26 | 25 | impcom | |- ( ( M < K /\ K e. ZZ ) -> ( M e. ZZ -> -. M = K ) ) |
| 27 | 26 | imp | |- ( ( ( M < K /\ K e. ZZ ) /\ M e. ZZ ) -> -. M = K ) |
| 28 | 15 27 | jctird | |- ( ( ( M < K /\ K e. ZZ ) /\ M e. ZZ ) -> ( 1 <_ M -> ( -. M = 0 /\ -. M = K ) ) ) |
| 29 | 4 5 6 28 | syl21anc | |- ( M e. ( 1 ..^ K ) -> ( 1 <_ M -> ( -. M = 0 /\ -. M = K ) ) ) |
| 30 | 3 29 | mpd | |- ( M e. ( 1 ..^ K ) -> ( -. M = 0 /\ -. M = K ) ) |
| 31 | ioran | |- ( -. ( M = 0 \/ M = K ) <-> ( -. M = 0 /\ -. M = K ) ) |
|
| 32 | 30 31 | sylibr | |- ( M e. ( 1 ..^ K ) -> -. ( M = 0 \/ M = K ) ) |
| 33 | 32 | a1i | |- ( M e. ( 0 ... K ) -> ( M e. ( 1 ..^ K ) -> -. ( M = 0 \/ M = K ) ) ) |
| 34 | 33 | con2d | |- ( M e. ( 0 ... K ) -> ( ( M = 0 \/ M = K ) -> -. M e. ( 1 ..^ K ) ) ) |
| 35 | 2 34 | impbid | |- ( M e. ( 0 ... K ) -> ( -. M e. ( 1 ..^ K ) <-> ( M = 0 \/ M = K ) ) ) |