This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subtraction from both sides of 'less than'. (Contributed by FL, 3-Jan-2008) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltsub1 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A < B <-> ( A - C ) < ( B - C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lesub1 | |- ( ( B e. RR /\ A e. RR /\ C e. RR ) -> ( B <_ A <-> ( B - C ) <_ ( A - C ) ) ) |
|
| 2 | 1 | 3com12 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B <_ A <-> ( B - C ) <_ ( A - C ) ) ) |
| 3 | 2 | notbid | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( -. B <_ A <-> -. ( B - C ) <_ ( A - C ) ) ) |
| 4 | simp1 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. RR ) |
|
| 5 | simp2 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. RR ) |
|
| 6 | 4 5 | ltnled | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A < B <-> -. B <_ A ) ) |
| 7 | simp3 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. RR ) |
|
| 8 | 4 7 | resubcld | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A - C ) e. RR ) |
| 9 | 5 7 | resubcld | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B - C ) e. RR ) |
| 10 | 8 9 | ltnled | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A - C ) < ( B - C ) <-> -. ( B - C ) <_ ( A - C ) ) ) |
| 11 | 3 6 10 | 3bitr4d | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A < B <-> ( A - C ) < ( B - C ) ) ) |