This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for efadd (exponential function addition law). (Contributed by Mario Carneiro, 29-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efadd.1 | |- F = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) |
|
| efadd.2 | |- G = ( n e. NN0 |-> ( ( B ^ n ) / ( ! ` n ) ) ) |
||
| efadd.3 | |- H = ( n e. NN0 |-> ( ( ( A + B ) ^ n ) / ( ! ` n ) ) ) |
||
| efadd.4 | |- ( ph -> A e. CC ) |
||
| efadd.5 | |- ( ph -> B e. CC ) |
||
| Assertion | efaddlem | |- ( ph -> ( exp ` ( A + B ) ) = ( ( exp ` A ) x. ( exp ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efadd.1 | |- F = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) |
|
| 2 | efadd.2 | |- G = ( n e. NN0 |-> ( ( B ^ n ) / ( ! ` n ) ) ) |
|
| 3 | efadd.3 | |- H = ( n e. NN0 |-> ( ( ( A + B ) ^ n ) / ( ! ` n ) ) ) |
|
| 4 | efadd.4 | |- ( ph -> A e. CC ) |
|
| 5 | efadd.5 | |- ( ph -> B e. CC ) |
|
| 6 | 4 5 | addcld | |- ( ph -> ( A + B ) e. CC ) |
| 7 | 3 | efcvg | |- ( ( A + B ) e. CC -> seq 0 ( + , H ) ~~> ( exp ` ( A + B ) ) ) |
| 8 | 6 7 | syl | |- ( ph -> seq 0 ( + , H ) ~~> ( exp ` ( A + B ) ) ) |
| 9 | 1 | eftval | |- ( j e. NN0 -> ( F ` j ) = ( ( A ^ j ) / ( ! ` j ) ) ) |
| 10 | 9 | adantl | |- ( ( ph /\ j e. NN0 ) -> ( F ` j ) = ( ( A ^ j ) / ( ! ` j ) ) ) |
| 11 | absexp | |- ( ( A e. CC /\ j e. NN0 ) -> ( abs ` ( A ^ j ) ) = ( ( abs ` A ) ^ j ) ) |
|
| 12 | 4 11 | sylan | |- ( ( ph /\ j e. NN0 ) -> ( abs ` ( A ^ j ) ) = ( ( abs ` A ) ^ j ) ) |
| 13 | faccl | |- ( j e. NN0 -> ( ! ` j ) e. NN ) |
|
| 14 | 13 | adantl | |- ( ( ph /\ j e. NN0 ) -> ( ! ` j ) e. NN ) |
| 15 | nnre | |- ( ( ! ` j ) e. NN -> ( ! ` j ) e. RR ) |
|
| 16 | nnnn0 | |- ( ( ! ` j ) e. NN -> ( ! ` j ) e. NN0 ) |
|
| 17 | 16 | nn0ge0d | |- ( ( ! ` j ) e. NN -> 0 <_ ( ! ` j ) ) |
| 18 | 15 17 | absidd | |- ( ( ! ` j ) e. NN -> ( abs ` ( ! ` j ) ) = ( ! ` j ) ) |
| 19 | 14 18 | syl | |- ( ( ph /\ j e. NN0 ) -> ( abs ` ( ! ` j ) ) = ( ! ` j ) ) |
| 20 | 12 19 | oveq12d | |- ( ( ph /\ j e. NN0 ) -> ( ( abs ` ( A ^ j ) ) / ( abs ` ( ! ` j ) ) ) = ( ( ( abs ` A ) ^ j ) / ( ! ` j ) ) ) |
| 21 | expcl | |- ( ( A e. CC /\ j e. NN0 ) -> ( A ^ j ) e. CC ) |
|
| 22 | 4 21 | sylan | |- ( ( ph /\ j e. NN0 ) -> ( A ^ j ) e. CC ) |
| 23 | 14 | nncnd | |- ( ( ph /\ j e. NN0 ) -> ( ! ` j ) e. CC ) |
| 24 | 14 | nnne0d | |- ( ( ph /\ j e. NN0 ) -> ( ! ` j ) =/= 0 ) |
| 25 | 22 23 24 | absdivd | |- ( ( ph /\ j e. NN0 ) -> ( abs ` ( ( A ^ j ) / ( ! ` j ) ) ) = ( ( abs ` ( A ^ j ) ) / ( abs ` ( ! ` j ) ) ) ) |
| 26 | eqid | |- ( n e. NN0 |-> ( ( ( abs ` A ) ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( ( abs ` A ) ^ n ) / ( ! ` n ) ) ) |
|
| 27 | 26 | eftval | |- ( j e. NN0 -> ( ( n e. NN0 |-> ( ( ( abs ` A ) ^ n ) / ( ! ` n ) ) ) ` j ) = ( ( ( abs ` A ) ^ j ) / ( ! ` j ) ) ) |
| 28 | 27 | adantl | |- ( ( ph /\ j e. NN0 ) -> ( ( n e. NN0 |-> ( ( ( abs ` A ) ^ n ) / ( ! ` n ) ) ) ` j ) = ( ( ( abs ` A ) ^ j ) / ( ! ` j ) ) ) |
| 29 | 20 25 28 | 3eqtr4rd | |- ( ( ph /\ j e. NN0 ) -> ( ( n e. NN0 |-> ( ( ( abs ` A ) ^ n ) / ( ! ` n ) ) ) ` j ) = ( abs ` ( ( A ^ j ) / ( ! ` j ) ) ) ) |
| 30 | eftcl | |- ( ( A e. CC /\ j e. NN0 ) -> ( ( A ^ j ) / ( ! ` j ) ) e. CC ) |
|
| 31 | 4 30 | sylan | |- ( ( ph /\ j e. NN0 ) -> ( ( A ^ j ) / ( ! ` j ) ) e. CC ) |
| 32 | 2 | eftval | |- ( k e. NN0 -> ( G ` k ) = ( ( B ^ k ) / ( ! ` k ) ) ) |
| 33 | 32 | adantl | |- ( ( ph /\ k e. NN0 ) -> ( G ` k ) = ( ( B ^ k ) / ( ! ` k ) ) ) |
| 34 | eftcl | |- ( ( B e. CC /\ k e. NN0 ) -> ( ( B ^ k ) / ( ! ` k ) ) e. CC ) |
|
| 35 | 5 34 | sylan | |- ( ( ph /\ k e. NN0 ) -> ( ( B ^ k ) / ( ! ` k ) ) e. CC ) |
| 36 | 3 | eftval | |- ( k e. NN0 -> ( H ` k ) = ( ( ( A + B ) ^ k ) / ( ! ` k ) ) ) |
| 37 | 36 | adantl | |- ( ( ph /\ k e. NN0 ) -> ( H ` k ) = ( ( ( A + B ) ^ k ) / ( ! ` k ) ) ) |
| 38 | 4 | adantr | |- ( ( ph /\ k e. NN0 ) -> A e. CC ) |
| 39 | 5 | adantr | |- ( ( ph /\ k e. NN0 ) -> B e. CC ) |
| 40 | simpr | |- ( ( ph /\ k e. NN0 ) -> k e. NN0 ) |
|
| 41 | binom | |- ( ( A e. CC /\ B e. CC /\ k e. NN0 ) -> ( ( A + B ) ^ k ) = sum_ j e. ( 0 ... k ) ( ( k _C j ) x. ( ( A ^ ( k - j ) ) x. ( B ^ j ) ) ) ) |
|
| 42 | 38 39 40 41 | syl3anc | |- ( ( ph /\ k e. NN0 ) -> ( ( A + B ) ^ k ) = sum_ j e. ( 0 ... k ) ( ( k _C j ) x. ( ( A ^ ( k - j ) ) x. ( B ^ j ) ) ) ) |
| 43 | 42 | oveq1d | |- ( ( ph /\ k e. NN0 ) -> ( ( ( A + B ) ^ k ) / ( ! ` k ) ) = ( sum_ j e. ( 0 ... k ) ( ( k _C j ) x. ( ( A ^ ( k - j ) ) x. ( B ^ j ) ) ) / ( ! ` k ) ) ) |
| 44 | fzfid | |- ( ( ph /\ k e. NN0 ) -> ( 0 ... k ) e. Fin ) |
|
| 45 | faccl | |- ( k e. NN0 -> ( ! ` k ) e. NN ) |
|
| 46 | 45 | adantl | |- ( ( ph /\ k e. NN0 ) -> ( ! ` k ) e. NN ) |
| 47 | 46 | nncnd | |- ( ( ph /\ k e. NN0 ) -> ( ! ` k ) e. CC ) |
| 48 | bccl2 | |- ( j e. ( 0 ... k ) -> ( k _C j ) e. NN ) |
|
| 49 | 48 | adantl | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( k _C j ) e. NN ) |
| 50 | 49 | nncnd | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( k _C j ) e. CC ) |
| 51 | 4 | ad2antrr | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> A e. CC ) |
| 52 | fznn0sub | |- ( j e. ( 0 ... k ) -> ( k - j ) e. NN0 ) |
|
| 53 | 52 | adantl | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( k - j ) e. NN0 ) |
| 54 | 51 53 | expcld | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( A ^ ( k - j ) ) e. CC ) |
| 55 | 5 | ad2antrr | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> B e. CC ) |
| 56 | elfznn0 | |- ( j e. ( 0 ... k ) -> j e. NN0 ) |
|
| 57 | 56 | adantl | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> j e. NN0 ) |
| 58 | 55 57 | expcld | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( B ^ j ) e. CC ) |
| 59 | 54 58 | mulcld | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( A ^ ( k - j ) ) x. ( B ^ j ) ) e. CC ) |
| 60 | 50 59 | mulcld | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( k _C j ) x. ( ( A ^ ( k - j ) ) x. ( B ^ j ) ) ) e. CC ) |
| 61 | 46 | nnne0d | |- ( ( ph /\ k e. NN0 ) -> ( ! ` k ) =/= 0 ) |
| 62 | 44 47 60 61 | fsumdivc | |- ( ( ph /\ k e. NN0 ) -> ( sum_ j e. ( 0 ... k ) ( ( k _C j ) x. ( ( A ^ ( k - j ) ) x. ( B ^ j ) ) ) / ( ! ` k ) ) = sum_ j e. ( 0 ... k ) ( ( ( k _C j ) x. ( ( A ^ ( k - j ) ) x. ( B ^ j ) ) ) / ( ! ` k ) ) ) |
| 63 | 51 57 | expcld | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( A ^ j ) e. CC ) |
| 64 | 57 13 | syl | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ! ` j ) e. NN ) |
| 65 | 64 | nncnd | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ! ` j ) e. CC ) |
| 66 | 64 | nnne0d | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ! ` j ) =/= 0 ) |
| 67 | 63 65 66 | divcld | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( A ^ j ) / ( ! ` j ) ) e. CC ) |
| 68 | 2 | eftval | |- ( ( k - j ) e. NN0 -> ( G ` ( k - j ) ) = ( ( B ^ ( k - j ) ) / ( ! ` ( k - j ) ) ) ) |
| 69 | 53 68 | syl | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( G ` ( k - j ) ) = ( ( B ^ ( k - j ) ) / ( ! ` ( k - j ) ) ) ) |
| 70 | 55 53 | expcld | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( B ^ ( k - j ) ) e. CC ) |
| 71 | faccl | |- ( ( k - j ) e. NN0 -> ( ! ` ( k - j ) ) e. NN ) |
|
| 72 | 53 71 | syl | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ! ` ( k - j ) ) e. NN ) |
| 73 | 72 | nncnd | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ! ` ( k - j ) ) e. CC ) |
| 74 | 72 | nnne0d | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ! ` ( k - j ) ) =/= 0 ) |
| 75 | 70 73 74 | divcld | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( B ^ ( k - j ) ) / ( ! ` ( k - j ) ) ) e. CC ) |
| 76 | 69 75 | eqeltrd | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( G ` ( k - j ) ) e. CC ) |
| 77 | 67 76 | mulcld | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( ( A ^ j ) / ( ! ` j ) ) x. ( G ` ( k - j ) ) ) e. CC ) |
| 78 | oveq2 | |- ( j = ( ( 0 + k ) - m ) -> ( A ^ j ) = ( A ^ ( ( 0 + k ) - m ) ) ) |
|
| 79 | fveq2 | |- ( j = ( ( 0 + k ) - m ) -> ( ! ` j ) = ( ! ` ( ( 0 + k ) - m ) ) ) |
|
| 80 | 78 79 | oveq12d | |- ( j = ( ( 0 + k ) - m ) -> ( ( A ^ j ) / ( ! ` j ) ) = ( ( A ^ ( ( 0 + k ) - m ) ) / ( ! ` ( ( 0 + k ) - m ) ) ) ) |
| 81 | oveq2 | |- ( j = ( ( 0 + k ) - m ) -> ( k - j ) = ( k - ( ( 0 + k ) - m ) ) ) |
|
| 82 | 81 | fveq2d | |- ( j = ( ( 0 + k ) - m ) -> ( G ` ( k - j ) ) = ( G ` ( k - ( ( 0 + k ) - m ) ) ) ) |
| 83 | 80 82 | oveq12d | |- ( j = ( ( 0 + k ) - m ) -> ( ( ( A ^ j ) / ( ! ` j ) ) x. ( G ` ( k - j ) ) ) = ( ( ( A ^ ( ( 0 + k ) - m ) ) / ( ! ` ( ( 0 + k ) - m ) ) ) x. ( G ` ( k - ( ( 0 + k ) - m ) ) ) ) ) |
| 84 | 77 83 | fsumrev2 | |- ( ( ph /\ k e. NN0 ) -> sum_ j e. ( 0 ... k ) ( ( ( A ^ j ) / ( ! ` j ) ) x. ( G ` ( k - j ) ) ) = sum_ m e. ( 0 ... k ) ( ( ( A ^ ( ( 0 + k ) - m ) ) / ( ! ` ( ( 0 + k ) - m ) ) ) x. ( G ` ( k - ( ( 0 + k ) - m ) ) ) ) ) |
| 85 | 2 | eftval | |- ( j e. NN0 -> ( G ` j ) = ( ( B ^ j ) / ( ! ` j ) ) ) |
| 86 | 57 85 | syl | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( G ` j ) = ( ( B ^ j ) / ( ! ` j ) ) ) |
| 87 | 86 | oveq2d | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( ( A ^ ( k - j ) ) / ( ! ` ( k - j ) ) ) x. ( G ` j ) ) = ( ( ( A ^ ( k - j ) ) / ( ! ` ( k - j ) ) ) x. ( ( B ^ j ) / ( ! ` j ) ) ) ) |
| 88 | 72 64 | nnmulcld | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( ! ` ( k - j ) ) x. ( ! ` j ) ) e. NN ) |
| 89 | 88 | nncnd | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( ! ` ( k - j ) ) x. ( ! ` j ) ) e. CC ) |
| 90 | 88 | nnne0d | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( ! ` ( k - j ) ) x. ( ! ` j ) ) =/= 0 ) |
| 91 | 59 89 90 | divrec2d | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( ( A ^ ( k - j ) ) x. ( B ^ j ) ) / ( ( ! ` ( k - j ) ) x. ( ! ` j ) ) ) = ( ( 1 / ( ( ! ` ( k - j ) ) x. ( ! ` j ) ) ) x. ( ( A ^ ( k - j ) ) x. ( B ^ j ) ) ) ) |
| 92 | 54 73 58 65 74 66 | divmuldivd | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( ( A ^ ( k - j ) ) / ( ! ` ( k - j ) ) ) x. ( ( B ^ j ) / ( ! ` j ) ) ) = ( ( ( A ^ ( k - j ) ) x. ( B ^ j ) ) / ( ( ! ` ( k - j ) ) x. ( ! ` j ) ) ) ) |
| 93 | bcval2 | |- ( j e. ( 0 ... k ) -> ( k _C j ) = ( ( ! ` k ) / ( ( ! ` ( k - j ) ) x. ( ! ` j ) ) ) ) |
|
| 94 | 93 | adantl | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( k _C j ) = ( ( ! ` k ) / ( ( ! ` ( k - j ) ) x. ( ! ` j ) ) ) ) |
| 95 | 94 | oveq1d | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( k _C j ) / ( ! ` k ) ) = ( ( ( ! ` k ) / ( ( ! ` ( k - j ) ) x. ( ! ` j ) ) ) / ( ! ` k ) ) ) |
| 96 | 47 | adantr | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ! ` k ) e. CC ) |
| 97 | 61 | adantr | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ! ` k ) =/= 0 ) |
| 98 | 96 89 96 90 97 | divdiv32d | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( ( ! ` k ) / ( ( ! ` ( k - j ) ) x. ( ! ` j ) ) ) / ( ! ` k ) ) = ( ( ( ! ` k ) / ( ! ` k ) ) / ( ( ! ` ( k - j ) ) x. ( ! ` j ) ) ) ) |
| 99 | 96 97 | dividd | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( ! ` k ) / ( ! ` k ) ) = 1 ) |
| 100 | 99 | oveq1d | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( ( ! ` k ) / ( ! ` k ) ) / ( ( ! ` ( k - j ) ) x. ( ! ` j ) ) ) = ( 1 / ( ( ! ` ( k - j ) ) x. ( ! ` j ) ) ) ) |
| 101 | 98 100 | eqtrd | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( ( ! ` k ) / ( ( ! ` ( k - j ) ) x. ( ! ` j ) ) ) / ( ! ` k ) ) = ( 1 / ( ( ! ` ( k - j ) ) x. ( ! ` j ) ) ) ) |
| 102 | 95 101 | eqtrd | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( k _C j ) / ( ! ` k ) ) = ( 1 / ( ( ! ` ( k - j ) ) x. ( ! ` j ) ) ) ) |
| 103 | 102 | oveq1d | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( ( k _C j ) / ( ! ` k ) ) x. ( ( A ^ ( k - j ) ) x. ( B ^ j ) ) ) = ( ( 1 / ( ( ! ` ( k - j ) ) x. ( ! ` j ) ) ) x. ( ( A ^ ( k - j ) ) x. ( B ^ j ) ) ) ) |
| 104 | 91 92 103 | 3eqtr4rd | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( ( k _C j ) / ( ! ` k ) ) x. ( ( A ^ ( k - j ) ) x. ( B ^ j ) ) ) = ( ( ( A ^ ( k - j ) ) / ( ! ` ( k - j ) ) ) x. ( ( B ^ j ) / ( ! ` j ) ) ) ) |
| 105 | 87 104 | eqtr4d | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( ( A ^ ( k - j ) ) / ( ! ` ( k - j ) ) ) x. ( G ` j ) ) = ( ( ( k _C j ) / ( ! ` k ) ) x. ( ( A ^ ( k - j ) ) x. ( B ^ j ) ) ) ) |
| 106 | nn0cn | |- ( k e. NN0 -> k e. CC ) |
|
| 107 | 106 | ad2antlr | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> k e. CC ) |
| 108 | 107 | addlidd | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( 0 + k ) = k ) |
| 109 | 108 | oveq1d | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( 0 + k ) - j ) = ( k - j ) ) |
| 110 | 109 | oveq2d | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( A ^ ( ( 0 + k ) - j ) ) = ( A ^ ( k - j ) ) ) |
| 111 | 109 | fveq2d | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ! ` ( ( 0 + k ) - j ) ) = ( ! ` ( k - j ) ) ) |
| 112 | 110 111 | oveq12d | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( A ^ ( ( 0 + k ) - j ) ) / ( ! ` ( ( 0 + k ) - j ) ) ) = ( ( A ^ ( k - j ) ) / ( ! ` ( k - j ) ) ) ) |
| 113 | 109 | oveq2d | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( k - ( ( 0 + k ) - j ) ) = ( k - ( k - j ) ) ) |
| 114 | nn0cn | |- ( j e. NN0 -> j e. CC ) |
|
| 115 | 57 114 | syl | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> j e. CC ) |
| 116 | 107 115 | nncand | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( k - ( k - j ) ) = j ) |
| 117 | 113 116 | eqtrd | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( k - ( ( 0 + k ) - j ) ) = j ) |
| 118 | 117 | fveq2d | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( G ` ( k - ( ( 0 + k ) - j ) ) ) = ( G ` j ) ) |
| 119 | 112 118 | oveq12d | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( ( A ^ ( ( 0 + k ) - j ) ) / ( ! ` ( ( 0 + k ) - j ) ) ) x. ( G ` ( k - ( ( 0 + k ) - j ) ) ) ) = ( ( ( A ^ ( k - j ) ) / ( ! ` ( k - j ) ) ) x. ( G ` j ) ) ) |
| 120 | 50 59 96 97 | div23d | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( ( k _C j ) x. ( ( A ^ ( k - j ) ) x. ( B ^ j ) ) ) / ( ! ` k ) ) = ( ( ( k _C j ) / ( ! ` k ) ) x. ( ( A ^ ( k - j ) ) x. ( B ^ j ) ) ) ) |
| 121 | 105 119 120 | 3eqtr4rd | |- ( ( ( ph /\ k e. NN0 ) /\ j e. ( 0 ... k ) ) -> ( ( ( k _C j ) x. ( ( A ^ ( k - j ) ) x. ( B ^ j ) ) ) / ( ! ` k ) ) = ( ( ( A ^ ( ( 0 + k ) - j ) ) / ( ! ` ( ( 0 + k ) - j ) ) ) x. ( G ` ( k - ( ( 0 + k ) - j ) ) ) ) ) |
| 122 | 121 | sumeq2dv | |- ( ( ph /\ k e. NN0 ) -> sum_ j e. ( 0 ... k ) ( ( ( k _C j ) x. ( ( A ^ ( k - j ) ) x. ( B ^ j ) ) ) / ( ! ` k ) ) = sum_ j e. ( 0 ... k ) ( ( ( A ^ ( ( 0 + k ) - j ) ) / ( ! ` ( ( 0 + k ) - j ) ) ) x. ( G ` ( k - ( ( 0 + k ) - j ) ) ) ) ) |
| 123 | oveq2 | |- ( j = m -> ( ( 0 + k ) - j ) = ( ( 0 + k ) - m ) ) |
|
| 124 | 123 | oveq2d | |- ( j = m -> ( A ^ ( ( 0 + k ) - j ) ) = ( A ^ ( ( 0 + k ) - m ) ) ) |
| 125 | 123 | fveq2d | |- ( j = m -> ( ! ` ( ( 0 + k ) - j ) ) = ( ! ` ( ( 0 + k ) - m ) ) ) |
| 126 | 124 125 | oveq12d | |- ( j = m -> ( ( A ^ ( ( 0 + k ) - j ) ) / ( ! ` ( ( 0 + k ) - j ) ) ) = ( ( A ^ ( ( 0 + k ) - m ) ) / ( ! ` ( ( 0 + k ) - m ) ) ) ) |
| 127 | 123 | oveq2d | |- ( j = m -> ( k - ( ( 0 + k ) - j ) ) = ( k - ( ( 0 + k ) - m ) ) ) |
| 128 | 127 | fveq2d | |- ( j = m -> ( G ` ( k - ( ( 0 + k ) - j ) ) ) = ( G ` ( k - ( ( 0 + k ) - m ) ) ) ) |
| 129 | 126 128 | oveq12d | |- ( j = m -> ( ( ( A ^ ( ( 0 + k ) - j ) ) / ( ! ` ( ( 0 + k ) - j ) ) ) x. ( G ` ( k - ( ( 0 + k ) - j ) ) ) ) = ( ( ( A ^ ( ( 0 + k ) - m ) ) / ( ! ` ( ( 0 + k ) - m ) ) ) x. ( G ` ( k - ( ( 0 + k ) - m ) ) ) ) ) |
| 130 | 129 | cbvsumv | |- sum_ j e. ( 0 ... k ) ( ( ( A ^ ( ( 0 + k ) - j ) ) / ( ! ` ( ( 0 + k ) - j ) ) ) x. ( G ` ( k - ( ( 0 + k ) - j ) ) ) ) = sum_ m e. ( 0 ... k ) ( ( ( A ^ ( ( 0 + k ) - m ) ) / ( ! ` ( ( 0 + k ) - m ) ) ) x. ( G ` ( k - ( ( 0 + k ) - m ) ) ) ) |
| 131 | 122 130 | eqtrdi | |- ( ( ph /\ k e. NN0 ) -> sum_ j e. ( 0 ... k ) ( ( ( k _C j ) x. ( ( A ^ ( k - j ) ) x. ( B ^ j ) ) ) / ( ! ` k ) ) = sum_ m e. ( 0 ... k ) ( ( ( A ^ ( ( 0 + k ) - m ) ) / ( ! ` ( ( 0 + k ) - m ) ) ) x. ( G ` ( k - ( ( 0 + k ) - m ) ) ) ) ) |
| 132 | 84 131 | eqtr4d | |- ( ( ph /\ k e. NN0 ) -> sum_ j e. ( 0 ... k ) ( ( ( A ^ j ) / ( ! ` j ) ) x. ( G ` ( k - j ) ) ) = sum_ j e. ( 0 ... k ) ( ( ( k _C j ) x. ( ( A ^ ( k - j ) ) x. ( B ^ j ) ) ) / ( ! ` k ) ) ) |
| 133 | 62 132 | eqtr4d | |- ( ( ph /\ k e. NN0 ) -> ( sum_ j e. ( 0 ... k ) ( ( k _C j ) x. ( ( A ^ ( k - j ) ) x. ( B ^ j ) ) ) / ( ! ` k ) ) = sum_ j e. ( 0 ... k ) ( ( ( A ^ j ) / ( ! ` j ) ) x. ( G ` ( k - j ) ) ) ) |
| 134 | 43 133 | eqtrd | |- ( ( ph /\ k e. NN0 ) -> ( ( ( A + B ) ^ k ) / ( ! ` k ) ) = sum_ j e. ( 0 ... k ) ( ( ( A ^ j ) / ( ! ` j ) ) x. ( G ` ( k - j ) ) ) ) |
| 135 | 37 134 | eqtrd | |- ( ( ph /\ k e. NN0 ) -> ( H ` k ) = sum_ j e. ( 0 ... k ) ( ( ( A ^ j ) / ( ! ` j ) ) x. ( G ` ( k - j ) ) ) ) |
| 136 | 4 | abscld | |- ( ph -> ( abs ` A ) e. RR ) |
| 137 | 136 | recnd | |- ( ph -> ( abs ` A ) e. CC ) |
| 138 | 26 | efcllem | |- ( ( abs ` A ) e. CC -> seq 0 ( + , ( n e. NN0 |-> ( ( ( abs ` A ) ^ n ) / ( ! ` n ) ) ) ) e. dom ~~> ) |
| 139 | 137 138 | syl | |- ( ph -> seq 0 ( + , ( n e. NN0 |-> ( ( ( abs ` A ) ^ n ) / ( ! ` n ) ) ) ) e. dom ~~> ) |
| 140 | 2 | efcllem | |- ( B e. CC -> seq 0 ( + , G ) e. dom ~~> ) |
| 141 | 5 140 | syl | |- ( ph -> seq 0 ( + , G ) e. dom ~~> ) |
| 142 | 10 29 31 33 35 135 139 141 | mertens | |- ( ph -> seq 0 ( + , H ) ~~> ( sum_ j e. NN0 ( ( A ^ j ) / ( ! ` j ) ) x. sum_ k e. NN0 ( ( B ^ k ) / ( ! ` k ) ) ) ) |
| 143 | efval | |- ( A e. CC -> ( exp ` A ) = sum_ j e. NN0 ( ( A ^ j ) / ( ! ` j ) ) ) |
|
| 144 | 4 143 | syl | |- ( ph -> ( exp ` A ) = sum_ j e. NN0 ( ( A ^ j ) / ( ! ` j ) ) ) |
| 145 | efval | |- ( B e. CC -> ( exp ` B ) = sum_ k e. NN0 ( ( B ^ k ) / ( ! ` k ) ) ) |
|
| 146 | 5 145 | syl | |- ( ph -> ( exp ` B ) = sum_ k e. NN0 ( ( B ^ k ) / ( ! ` k ) ) ) |
| 147 | 144 146 | oveq12d | |- ( ph -> ( ( exp ` A ) x. ( exp ` B ) ) = ( sum_ j e. NN0 ( ( A ^ j ) / ( ! ` j ) ) x. sum_ k e. NN0 ( ( B ^ k ) / ( ! ` k ) ) ) ) |
| 148 | 142 147 | breqtrrd | |- ( ph -> seq 0 ( + , H ) ~~> ( ( exp ` A ) x. ( exp ` B ) ) ) |
| 149 | climuni | |- ( ( seq 0 ( + , H ) ~~> ( exp ` ( A + B ) ) /\ seq 0 ( + , H ) ~~> ( ( exp ` A ) x. ( exp ` B ) ) ) -> ( exp ` ( A + B ) ) = ( ( exp ` A ) x. ( exp ` B ) ) ) |
|
| 150 | 8 148 149 | syl2anc | |- ( ph -> ( exp ` ( A + B ) ) = ( ( exp ` A ) x. ( exp ` B ) ) ) |