This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for efadd (exponential function addition law). (Contributed by Mario Carneiro, 29-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efadd.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) | |
| efadd.2 | ⊢ 𝐺 = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐵 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) | ||
| efadd.3 | ⊢ 𝐻 = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐴 + 𝐵 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) | ||
| efadd.4 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | ||
| efadd.5 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| Assertion | efaddlem | ⊢ ( 𝜑 → ( exp ‘ ( 𝐴 + 𝐵 ) ) = ( ( exp ‘ 𝐴 ) · ( exp ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efadd.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) | |
| 2 | efadd.2 | ⊢ 𝐺 = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐵 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) | |
| 3 | efadd.3 | ⊢ 𝐻 = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝐴 + 𝐵 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) | |
| 4 | efadd.4 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 5 | efadd.5 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 6 | 4 5 | addcld | ⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) ∈ ℂ ) |
| 7 | 3 | efcvg | ⊢ ( ( 𝐴 + 𝐵 ) ∈ ℂ → seq 0 ( + , 𝐻 ) ⇝ ( exp ‘ ( 𝐴 + 𝐵 ) ) ) |
| 8 | 6 7 | syl | ⊢ ( 𝜑 → seq 0 ( + , 𝐻 ) ⇝ ( exp ‘ ( 𝐴 + 𝐵 ) ) ) |
| 9 | 1 | eftval | ⊢ ( 𝑗 ∈ ℕ0 → ( 𝐹 ‘ 𝑗 ) = ( ( 𝐴 ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) ) |
| 10 | 9 | adantl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑗 ) = ( ( 𝐴 ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) ) |
| 11 | absexp | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0 ) → ( abs ‘ ( 𝐴 ↑ 𝑗 ) ) = ( ( abs ‘ 𝐴 ) ↑ 𝑗 ) ) | |
| 12 | 4 11 | sylan | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( abs ‘ ( 𝐴 ↑ 𝑗 ) ) = ( ( abs ‘ 𝐴 ) ↑ 𝑗 ) ) |
| 13 | faccl | ⊢ ( 𝑗 ∈ ℕ0 → ( ! ‘ 𝑗 ) ∈ ℕ ) | |
| 14 | 13 | adantl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ! ‘ 𝑗 ) ∈ ℕ ) |
| 15 | nnre | ⊢ ( ( ! ‘ 𝑗 ) ∈ ℕ → ( ! ‘ 𝑗 ) ∈ ℝ ) | |
| 16 | nnnn0 | ⊢ ( ( ! ‘ 𝑗 ) ∈ ℕ → ( ! ‘ 𝑗 ) ∈ ℕ0 ) | |
| 17 | 16 | nn0ge0d | ⊢ ( ( ! ‘ 𝑗 ) ∈ ℕ → 0 ≤ ( ! ‘ 𝑗 ) ) |
| 18 | 15 17 | absidd | ⊢ ( ( ! ‘ 𝑗 ) ∈ ℕ → ( abs ‘ ( ! ‘ 𝑗 ) ) = ( ! ‘ 𝑗 ) ) |
| 19 | 14 18 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( abs ‘ ( ! ‘ 𝑗 ) ) = ( ! ‘ 𝑗 ) ) |
| 20 | 12 19 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( abs ‘ ( 𝐴 ↑ 𝑗 ) ) / ( abs ‘ ( ! ‘ 𝑗 ) ) ) = ( ( ( abs ‘ 𝐴 ) ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) ) |
| 21 | expcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑗 ) ∈ ℂ ) | |
| 22 | 4 21 | sylan | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑗 ) ∈ ℂ ) |
| 23 | 14 | nncnd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ! ‘ 𝑗 ) ∈ ℂ ) |
| 24 | 14 | nnne0d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ! ‘ 𝑗 ) ≠ 0 ) |
| 25 | 22 23 24 | absdivd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( abs ‘ ( ( 𝐴 ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) ) = ( ( abs ‘ ( 𝐴 ↑ 𝑗 ) ) / ( abs ‘ ( ! ‘ 𝑗 ) ) ) ) |
| 26 | eqid | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) | |
| 27 | 26 | eftval | ⊢ ( 𝑗 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑗 ) = ( ( ( abs ‘ 𝐴 ) ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) ) |
| 28 | 27 | adantl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑗 ) = ( ( ( abs ‘ 𝐴 ) ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) ) |
| 29 | 20 25 28 | 3eqtr4rd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ‘ 𝑗 ) = ( abs ‘ ( ( 𝐴 ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) ) ) |
| 30 | eftcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) ∈ ℂ ) | |
| 31 | 4 30 | sylan | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) ∈ ℂ ) |
| 32 | 2 | eftval | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝐺 ‘ 𝑘 ) = ( ( 𝐵 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 33 | 32 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑘 ) = ( ( 𝐵 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 34 | eftcl | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐵 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℂ ) | |
| 35 | 5 34 | sylan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐵 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ∈ ℂ ) |
| 36 | 3 | eftval | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝐻 ‘ 𝑘 ) = ( ( ( 𝐴 + 𝐵 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 37 | 36 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐻 ‘ 𝑘 ) = ( ( ( 𝐴 + 𝐵 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 38 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
| 39 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐵 ∈ ℂ ) |
| 40 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) | |
| 41 | binom | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 + 𝐵 ) ↑ 𝑘 ) = Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( 𝑘 C 𝑗 ) · ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) · ( 𝐵 ↑ 𝑗 ) ) ) ) | |
| 42 | 38 39 40 41 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 + 𝐵 ) ↑ 𝑘 ) = Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( 𝑘 C 𝑗 ) · ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) · ( 𝐵 ↑ 𝑗 ) ) ) ) |
| 43 | 42 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐴 + 𝐵 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) = ( Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( 𝑘 C 𝑗 ) · ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) · ( 𝐵 ↑ 𝑗 ) ) ) / ( ! ‘ 𝑘 ) ) ) |
| 44 | fzfid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 0 ... 𝑘 ) ∈ Fin ) | |
| 45 | faccl | ⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ 𝑘 ) ∈ ℕ ) | |
| 46 | 45 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ! ‘ 𝑘 ) ∈ ℕ ) |
| 47 | 46 | nncnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ! ‘ 𝑘 ) ∈ ℂ ) |
| 48 | bccl2 | ⊢ ( 𝑗 ∈ ( 0 ... 𝑘 ) → ( 𝑘 C 𝑗 ) ∈ ℕ ) | |
| 49 | 48 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 𝑘 C 𝑗 ) ∈ ℕ ) |
| 50 | 49 | nncnd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 𝑘 C 𝑗 ) ∈ ℂ ) |
| 51 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → 𝐴 ∈ ℂ ) |
| 52 | fznn0sub | ⊢ ( 𝑗 ∈ ( 0 ... 𝑘 ) → ( 𝑘 − 𝑗 ) ∈ ℕ0 ) | |
| 53 | 52 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 𝑘 − 𝑗 ) ∈ ℕ0 ) |
| 54 | 51 53 | expcld | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) ∈ ℂ ) |
| 55 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → 𝐵 ∈ ℂ ) |
| 56 | elfznn0 | ⊢ ( 𝑗 ∈ ( 0 ... 𝑘 ) → 𝑗 ∈ ℕ0 ) | |
| 57 | 56 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → 𝑗 ∈ ℕ0 ) |
| 58 | 55 57 | expcld | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 𝐵 ↑ 𝑗 ) ∈ ℂ ) |
| 59 | 54 58 | mulcld | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) · ( 𝐵 ↑ 𝑗 ) ) ∈ ℂ ) |
| 60 | 50 59 | mulcld | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( 𝑘 C 𝑗 ) · ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) · ( 𝐵 ↑ 𝑗 ) ) ) ∈ ℂ ) |
| 61 | 46 | nnne0d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ! ‘ 𝑘 ) ≠ 0 ) |
| 62 | 44 47 60 61 | fsumdivc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( 𝑘 C 𝑗 ) · ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) · ( 𝐵 ↑ 𝑗 ) ) ) / ( ! ‘ 𝑘 ) ) = Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( ( 𝑘 C 𝑗 ) · ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) · ( 𝐵 ↑ 𝑗 ) ) ) / ( ! ‘ 𝑘 ) ) ) |
| 63 | 51 57 | expcld | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 𝐴 ↑ 𝑗 ) ∈ ℂ ) |
| 64 | 57 13 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ! ‘ 𝑗 ) ∈ ℕ ) |
| 65 | 64 | nncnd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ! ‘ 𝑗 ) ∈ ℂ ) |
| 66 | 64 | nnne0d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ! ‘ 𝑗 ) ≠ 0 ) |
| 67 | 63 65 66 | divcld | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( 𝐴 ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) ∈ ℂ ) |
| 68 | 2 | eftval | ⊢ ( ( 𝑘 − 𝑗 ) ∈ ℕ0 → ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) = ( ( 𝐵 ↑ ( 𝑘 − 𝑗 ) ) / ( ! ‘ ( 𝑘 − 𝑗 ) ) ) ) |
| 69 | 53 68 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) = ( ( 𝐵 ↑ ( 𝑘 − 𝑗 ) ) / ( ! ‘ ( 𝑘 − 𝑗 ) ) ) ) |
| 70 | 55 53 | expcld | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 𝐵 ↑ ( 𝑘 − 𝑗 ) ) ∈ ℂ ) |
| 71 | faccl | ⊢ ( ( 𝑘 − 𝑗 ) ∈ ℕ0 → ( ! ‘ ( 𝑘 − 𝑗 ) ) ∈ ℕ ) | |
| 72 | 53 71 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ! ‘ ( 𝑘 − 𝑗 ) ) ∈ ℕ ) |
| 73 | 72 | nncnd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ! ‘ ( 𝑘 − 𝑗 ) ) ∈ ℂ ) |
| 74 | 72 | nnne0d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ! ‘ ( 𝑘 − 𝑗 ) ) ≠ 0 ) |
| 75 | 70 73 74 | divcld | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( 𝐵 ↑ ( 𝑘 − 𝑗 ) ) / ( ! ‘ ( 𝑘 − 𝑗 ) ) ) ∈ ℂ ) |
| 76 | 69 75 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ∈ ℂ ) |
| 77 | 67 76 | mulcld | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( ( 𝐴 ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) · ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) ∈ ℂ ) |
| 78 | oveq2 | ⊢ ( 𝑗 = ( ( 0 + 𝑘 ) − 𝑚 ) → ( 𝐴 ↑ 𝑗 ) = ( 𝐴 ↑ ( ( 0 + 𝑘 ) − 𝑚 ) ) ) | |
| 79 | fveq2 | ⊢ ( 𝑗 = ( ( 0 + 𝑘 ) − 𝑚 ) → ( ! ‘ 𝑗 ) = ( ! ‘ ( ( 0 + 𝑘 ) − 𝑚 ) ) ) | |
| 80 | 78 79 | oveq12d | ⊢ ( 𝑗 = ( ( 0 + 𝑘 ) − 𝑚 ) → ( ( 𝐴 ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) = ( ( 𝐴 ↑ ( ( 0 + 𝑘 ) − 𝑚 ) ) / ( ! ‘ ( ( 0 + 𝑘 ) − 𝑚 ) ) ) ) |
| 81 | oveq2 | ⊢ ( 𝑗 = ( ( 0 + 𝑘 ) − 𝑚 ) → ( 𝑘 − 𝑗 ) = ( 𝑘 − ( ( 0 + 𝑘 ) − 𝑚 ) ) ) | |
| 82 | 81 | fveq2d | ⊢ ( 𝑗 = ( ( 0 + 𝑘 ) − 𝑚 ) → ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) = ( 𝐺 ‘ ( 𝑘 − ( ( 0 + 𝑘 ) − 𝑚 ) ) ) ) |
| 83 | 80 82 | oveq12d | ⊢ ( 𝑗 = ( ( 0 + 𝑘 ) − 𝑚 ) → ( ( ( 𝐴 ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) · ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) = ( ( ( 𝐴 ↑ ( ( 0 + 𝑘 ) − 𝑚 ) ) / ( ! ‘ ( ( 0 + 𝑘 ) − 𝑚 ) ) ) · ( 𝐺 ‘ ( 𝑘 − ( ( 0 + 𝑘 ) − 𝑚 ) ) ) ) ) |
| 84 | 77 83 | fsumrev2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( ( 𝐴 ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) · ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) = Σ 𝑚 ∈ ( 0 ... 𝑘 ) ( ( ( 𝐴 ↑ ( ( 0 + 𝑘 ) − 𝑚 ) ) / ( ! ‘ ( ( 0 + 𝑘 ) − 𝑚 ) ) ) · ( 𝐺 ‘ ( 𝑘 − ( ( 0 + 𝑘 ) − 𝑚 ) ) ) ) ) |
| 85 | 2 | eftval | ⊢ ( 𝑗 ∈ ℕ0 → ( 𝐺 ‘ 𝑗 ) = ( ( 𝐵 ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) ) |
| 86 | 57 85 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 𝐺 ‘ 𝑗 ) = ( ( 𝐵 ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) ) |
| 87 | 86 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) / ( ! ‘ ( 𝑘 − 𝑗 ) ) ) · ( 𝐺 ‘ 𝑗 ) ) = ( ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) / ( ! ‘ ( 𝑘 − 𝑗 ) ) ) · ( ( 𝐵 ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) ) ) |
| 88 | 72 64 | nnmulcld | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( ! ‘ ( 𝑘 − 𝑗 ) ) · ( ! ‘ 𝑗 ) ) ∈ ℕ ) |
| 89 | 88 | nncnd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( ! ‘ ( 𝑘 − 𝑗 ) ) · ( ! ‘ 𝑗 ) ) ∈ ℂ ) |
| 90 | 88 | nnne0d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( ! ‘ ( 𝑘 − 𝑗 ) ) · ( ! ‘ 𝑗 ) ) ≠ 0 ) |
| 91 | 59 89 90 | divrec2d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) · ( 𝐵 ↑ 𝑗 ) ) / ( ( ! ‘ ( 𝑘 − 𝑗 ) ) · ( ! ‘ 𝑗 ) ) ) = ( ( 1 / ( ( ! ‘ ( 𝑘 − 𝑗 ) ) · ( ! ‘ 𝑗 ) ) ) · ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) · ( 𝐵 ↑ 𝑗 ) ) ) ) |
| 92 | 54 73 58 65 74 66 | divmuldivd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) / ( ! ‘ ( 𝑘 − 𝑗 ) ) ) · ( ( 𝐵 ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) ) = ( ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) · ( 𝐵 ↑ 𝑗 ) ) / ( ( ! ‘ ( 𝑘 − 𝑗 ) ) · ( ! ‘ 𝑗 ) ) ) ) |
| 93 | bcval2 | ⊢ ( 𝑗 ∈ ( 0 ... 𝑘 ) → ( 𝑘 C 𝑗 ) = ( ( ! ‘ 𝑘 ) / ( ( ! ‘ ( 𝑘 − 𝑗 ) ) · ( ! ‘ 𝑗 ) ) ) ) | |
| 94 | 93 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 𝑘 C 𝑗 ) = ( ( ! ‘ 𝑘 ) / ( ( ! ‘ ( 𝑘 − 𝑗 ) ) · ( ! ‘ 𝑗 ) ) ) ) |
| 95 | 94 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( 𝑘 C 𝑗 ) / ( ! ‘ 𝑘 ) ) = ( ( ( ! ‘ 𝑘 ) / ( ( ! ‘ ( 𝑘 − 𝑗 ) ) · ( ! ‘ 𝑗 ) ) ) / ( ! ‘ 𝑘 ) ) ) |
| 96 | 47 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ! ‘ 𝑘 ) ∈ ℂ ) |
| 97 | 61 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ! ‘ 𝑘 ) ≠ 0 ) |
| 98 | 96 89 96 90 97 | divdiv32d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( ( ! ‘ 𝑘 ) / ( ( ! ‘ ( 𝑘 − 𝑗 ) ) · ( ! ‘ 𝑗 ) ) ) / ( ! ‘ 𝑘 ) ) = ( ( ( ! ‘ 𝑘 ) / ( ! ‘ 𝑘 ) ) / ( ( ! ‘ ( 𝑘 − 𝑗 ) ) · ( ! ‘ 𝑗 ) ) ) ) |
| 99 | 96 97 | dividd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( ! ‘ 𝑘 ) / ( ! ‘ 𝑘 ) ) = 1 ) |
| 100 | 99 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( ( ! ‘ 𝑘 ) / ( ! ‘ 𝑘 ) ) / ( ( ! ‘ ( 𝑘 − 𝑗 ) ) · ( ! ‘ 𝑗 ) ) ) = ( 1 / ( ( ! ‘ ( 𝑘 − 𝑗 ) ) · ( ! ‘ 𝑗 ) ) ) ) |
| 101 | 98 100 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( ( ! ‘ 𝑘 ) / ( ( ! ‘ ( 𝑘 − 𝑗 ) ) · ( ! ‘ 𝑗 ) ) ) / ( ! ‘ 𝑘 ) ) = ( 1 / ( ( ! ‘ ( 𝑘 − 𝑗 ) ) · ( ! ‘ 𝑗 ) ) ) ) |
| 102 | 95 101 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( 𝑘 C 𝑗 ) / ( ! ‘ 𝑘 ) ) = ( 1 / ( ( ! ‘ ( 𝑘 − 𝑗 ) ) · ( ! ‘ 𝑗 ) ) ) ) |
| 103 | 102 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( ( 𝑘 C 𝑗 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) · ( 𝐵 ↑ 𝑗 ) ) ) = ( ( 1 / ( ( ! ‘ ( 𝑘 − 𝑗 ) ) · ( ! ‘ 𝑗 ) ) ) · ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) · ( 𝐵 ↑ 𝑗 ) ) ) ) |
| 104 | 91 92 103 | 3eqtr4rd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( ( 𝑘 C 𝑗 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) · ( 𝐵 ↑ 𝑗 ) ) ) = ( ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) / ( ! ‘ ( 𝑘 − 𝑗 ) ) ) · ( ( 𝐵 ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) ) ) |
| 105 | 87 104 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) / ( ! ‘ ( 𝑘 − 𝑗 ) ) ) · ( 𝐺 ‘ 𝑗 ) ) = ( ( ( 𝑘 C 𝑗 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) · ( 𝐵 ↑ 𝑗 ) ) ) ) |
| 106 | nn0cn | ⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ ) | |
| 107 | 106 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → 𝑘 ∈ ℂ ) |
| 108 | 107 | addlidd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 0 + 𝑘 ) = 𝑘 ) |
| 109 | 108 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( 0 + 𝑘 ) − 𝑗 ) = ( 𝑘 − 𝑗 ) ) |
| 110 | 109 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 𝐴 ↑ ( ( 0 + 𝑘 ) − 𝑗 ) ) = ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) ) |
| 111 | 109 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ! ‘ ( ( 0 + 𝑘 ) − 𝑗 ) ) = ( ! ‘ ( 𝑘 − 𝑗 ) ) ) |
| 112 | 110 111 | oveq12d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( 𝐴 ↑ ( ( 0 + 𝑘 ) − 𝑗 ) ) / ( ! ‘ ( ( 0 + 𝑘 ) − 𝑗 ) ) ) = ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) / ( ! ‘ ( 𝑘 − 𝑗 ) ) ) ) |
| 113 | 109 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 𝑘 − ( ( 0 + 𝑘 ) − 𝑗 ) ) = ( 𝑘 − ( 𝑘 − 𝑗 ) ) ) |
| 114 | nn0cn | ⊢ ( 𝑗 ∈ ℕ0 → 𝑗 ∈ ℂ ) | |
| 115 | 57 114 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → 𝑗 ∈ ℂ ) |
| 116 | 107 115 | nncand | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 𝑘 − ( 𝑘 − 𝑗 ) ) = 𝑗 ) |
| 117 | 113 116 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 𝑘 − ( ( 0 + 𝑘 ) − 𝑗 ) ) = 𝑗 ) |
| 118 | 117 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( 𝐺 ‘ ( 𝑘 − ( ( 0 + 𝑘 ) − 𝑗 ) ) ) = ( 𝐺 ‘ 𝑗 ) ) |
| 119 | 112 118 | oveq12d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( ( 𝐴 ↑ ( ( 0 + 𝑘 ) − 𝑗 ) ) / ( ! ‘ ( ( 0 + 𝑘 ) − 𝑗 ) ) ) · ( 𝐺 ‘ ( 𝑘 − ( ( 0 + 𝑘 ) − 𝑗 ) ) ) ) = ( ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) / ( ! ‘ ( 𝑘 − 𝑗 ) ) ) · ( 𝐺 ‘ 𝑗 ) ) ) |
| 120 | 50 59 96 97 | div23d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( ( 𝑘 C 𝑗 ) · ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) · ( 𝐵 ↑ 𝑗 ) ) ) / ( ! ‘ 𝑘 ) ) = ( ( ( 𝑘 C 𝑗 ) / ( ! ‘ 𝑘 ) ) · ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) · ( 𝐵 ↑ 𝑗 ) ) ) ) |
| 121 | 105 119 120 | 3eqtr4rd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) ∧ 𝑗 ∈ ( 0 ... 𝑘 ) ) → ( ( ( 𝑘 C 𝑗 ) · ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) · ( 𝐵 ↑ 𝑗 ) ) ) / ( ! ‘ 𝑘 ) ) = ( ( ( 𝐴 ↑ ( ( 0 + 𝑘 ) − 𝑗 ) ) / ( ! ‘ ( ( 0 + 𝑘 ) − 𝑗 ) ) ) · ( 𝐺 ‘ ( 𝑘 − ( ( 0 + 𝑘 ) − 𝑗 ) ) ) ) ) |
| 122 | 121 | sumeq2dv | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( ( 𝑘 C 𝑗 ) · ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) · ( 𝐵 ↑ 𝑗 ) ) ) / ( ! ‘ 𝑘 ) ) = Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( ( 𝐴 ↑ ( ( 0 + 𝑘 ) − 𝑗 ) ) / ( ! ‘ ( ( 0 + 𝑘 ) − 𝑗 ) ) ) · ( 𝐺 ‘ ( 𝑘 − ( ( 0 + 𝑘 ) − 𝑗 ) ) ) ) ) |
| 123 | oveq2 | ⊢ ( 𝑗 = 𝑚 → ( ( 0 + 𝑘 ) − 𝑗 ) = ( ( 0 + 𝑘 ) − 𝑚 ) ) | |
| 124 | 123 | oveq2d | ⊢ ( 𝑗 = 𝑚 → ( 𝐴 ↑ ( ( 0 + 𝑘 ) − 𝑗 ) ) = ( 𝐴 ↑ ( ( 0 + 𝑘 ) − 𝑚 ) ) ) |
| 125 | 123 | fveq2d | ⊢ ( 𝑗 = 𝑚 → ( ! ‘ ( ( 0 + 𝑘 ) − 𝑗 ) ) = ( ! ‘ ( ( 0 + 𝑘 ) − 𝑚 ) ) ) |
| 126 | 124 125 | oveq12d | ⊢ ( 𝑗 = 𝑚 → ( ( 𝐴 ↑ ( ( 0 + 𝑘 ) − 𝑗 ) ) / ( ! ‘ ( ( 0 + 𝑘 ) − 𝑗 ) ) ) = ( ( 𝐴 ↑ ( ( 0 + 𝑘 ) − 𝑚 ) ) / ( ! ‘ ( ( 0 + 𝑘 ) − 𝑚 ) ) ) ) |
| 127 | 123 | oveq2d | ⊢ ( 𝑗 = 𝑚 → ( 𝑘 − ( ( 0 + 𝑘 ) − 𝑗 ) ) = ( 𝑘 − ( ( 0 + 𝑘 ) − 𝑚 ) ) ) |
| 128 | 127 | fveq2d | ⊢ ( 𝑗 = 𝑚 → ( 𝐺 ‘ ( 𝑘 − ( ( 0 + 𝑘 ) − 𝑗 ) ) ) = ( 𝐺 ‘ ( 𝑘 − ( ( 0 + 𝑘 ) − 𝑚 ) ) ) ) |
| 129 | 126 128 | oveq12d | ⊢ ( 𝑗 = 𝑚 → ( ( ( 𝐴 ↑ ( ( 0 + 𝑘 ) − 𝑗 ) ) / ( ! ‘ ( ( 0 + 𝑘 ) − 𝑗 ) ) ) · ( 𝐺 ‘ ( 𝑘 − ( ( 0 + 𝑘 ) − 𝑗 ) ) ) ) = ( ( ( 𝐴 ↑ ( ( 0 + 𝑘 ) − 𝑚 ) ) / ( ! ‘ ( ( 0 + 𝑘 ) − 𝑚 ) ) ) · ( 𝐺 ‘ ( 𝑘 − ( ( 0 + 𝑘 ) − 𝑚 ) ) ) ) ) |
| 130 | 129 | cbvsumv | ⊢ Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( ( 𝐴 ↑ ( ( 0 + 𝑘 ) − 𝑗 ) ) / ( ! ‘ ( ( 0 + 𝑘 ) − 𝑗 ) ) ) · ( 𝐺 ‘ ( 𝑘 − ( ( 0 + 𝑘 ) − 𝑗 ) ) ) ) = Σ 𝑚 ∈ ( 0 ... 𝑘 ) ( ( ( 𝐴 ↑ ( ( 0 + 𝑘 ) − 𝑚 ) ) / ( ! ‘ ( ( 0 + 𝑘 ) − 𝑚 ) ) ) · ( 𝐺 ‘ ( 𝑘 − ( ( 0 + 𝑘 ) − 𝑚 ) ) ) ) |
| 131 | 122 130 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( ( 𝑘 C 𝑗 ) · ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) · ( 𝐵 ↑ 𝑗 ) ) ) / ( ! ‘ 𝑘 ) ) = Σ 𝑚 ∈ ( 0 ... 𝑘 ) ( ( ( 𝐴 ↑ ( ( 0 + 𝑘 ) − 𝑚 ) ) / ( ! ‘ ( ( 0 + 𝑘 ) − 𝑚 ) ) ) · ( 𝐺 ‘ ( 𝑘 − ( ( 0 + 𝑘 ) − 𝑚 ) ) ) ) ) |
| 132 | 84 131 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( ( 𝐴 ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) · ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) = Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( ( 𝑘 C 𝑗 ) · ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) · ( 𝐵 ↑ 𝑗 ) ) ) / ( ! ‘ 𝑘 ) ) ) |
| 133 | 62 132 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( 𝑘 C 𝑗 ) · ( ( 𝐴 ↑ ( 𝑘 − 𝑗 ) ) · ( 𝐵 ↑ 𝑗 ) ) ) / ( ! ‘ 𝑘 ) ) = Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( ( 𝐴 ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) · ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) ) |
| 134 | 43 133 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐴 + 𝐵 ) ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) = Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( ( 𝐴 ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) · ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) ) |
| 135 | 37 134 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐻 ‘ 𝑘 ) = Σ 𝑗 ∈ ( 0 ... 𝑘 ) ( ( ( 𝐴 ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) · ( 𝐺 ‘ ( 𝑘 − 𝑗 ) ) ) ) |
| 136 | 4 | abscld | ⊢ ( 𝜑 → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 137 | 136 | recnd | ⊢ ( 𝜑 → ( abs ‘ 𝐴 ) ∈ ℂ ) |
| 138 | 26 | efcllem | ⊢ ( ( abs ‘ 𝐴 ) ∈ ℂ → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ∈ dom ⇝ ) |
| 139 | 137 138 | syl | ⊢ ( 𝜑 → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( ( abs ‘ 𝐴 ) ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) ) ∈ dom ⇝ ) |
| 140 | 2 | efcllem | ⊢ ( 𝐵 ∈ ℂ → seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) |
| 141 | 5 140 | syl | ⊢ ( 𝜑 → seq 0 ( + , 𝐺 ) ∈ dom ⇝ ) |
| 142 | 10 29 31 33 35 135 139 141 | mertens | ⊢ ( 𝜑 → seq 0 ( + , 𝐻 ) ⇝ ( Σ 𝑗 ∈ ℕ0 ( ( 𝐴 ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝐵 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) |
| 143 | efval | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) = Σ 𝑗 ∈ ℕ0 ( ( 𝐴 ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) ) | |
| 144 | 4 143 | syl | ⊢ ( 𝜑 → ( exp ‘ 𝐴 ) = Σ 𝑗 ∈ ℕ0 ( ( 𝐴 ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) ) |
| 145 | efval | ⊢ ( 𝐵 ∈ ℂ → ( exp ‘ 𝐵 ) = Σ 𝑘 ∈ ℕ0 ( ( 𝐵 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) | |
| 146 | 5 145 | syl | ⊢ ( 𝜑 → ( exp ‘ 𝐵 ) = Σ 𝑘 ∈ ℕ0 ( ( 𝐵 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) |
| 147 | 144 146 | oveq12d | ⊢ ( 𝜑 → ( ( exp ‘ 𝐴 ) · ( exp ‘ 𝐵 ) ) = ( Σ 𝑗 ∈ ℕ0 ( ( 𝐴 ↑ 𝑗 ) / ( ! ‘ 𝑗 ) ) · Σ 𝑘 ∈ ℕ0 ( ( 𝐵 ↑ 𝑘 ) / ( ! ‘ 𝑘 ) ) ) ) |
| 148 | 142 147 | breqtrrd | ⊢ ( 𝜑 → seq 0 ( + , 𝐻 ) ⇝ ( ( exp ‘ 𝐴 ) · ( exp ‘ 𝐵 ) ) ) |
| 149 | climuni | ⊢ ( ( seq 0 ( + , 𝐻 ) ⇝ ( exp ‘ ( 𝐴 + 𝐵 ) ) ∧ seq 0 ( + , 𝐻 ) ⇝ ( ( exp ‘ 𝐴 ) · ( exp ‘ 𝐵 ) ) ) → ( exp ‘ ( 𝐴 + 𝐵 ) ) = ( ( exp ‘ 𝐴 ) · ( exp ‘ 𝐵 ) ) ) | |
| 150 | 8 148 149 | syl2anc | ⊢ ( 𝜑 → ( exp ‘ ( 𝐴 + 𝐵 ) ) = ( ( exp ‘ 𝐴 ) · ( exp ‘ 𝐵 ) ) ) |