This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The binomial theorem: ( A + B ) ^ N is the sum from k = 0 to N of ( N _C k ) x. ( ( A ^ k ) x. ( B ^ ( N - k ) ) . Theorem 15-2.8 of Gleason p. 296. This part of the proof sets up the induction and does the base case, with the bulk of the work (the induction step) in binomlem . This is Metamath 100 proof #44. (Contributed by NM, 7-Dec-2005) (Proof shortened by Mario Carneiro, 24-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | binom | |- ( ( A e. CC /\ B e. CC /\ N e. NN0 ) -> ( ( A + B ) ^ N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( x = 0 -> ( ( A + B ) ^ x ) = ( ( A + B ) ^ 0 ) ) |
|
| 2 | oveq2 | |- ( x = 0 -> ( 0 ... x ) = ( 0 ... 0 ) ) |
|
| 3 | oveq1 | |- ( x = 0 -> ( x _C k ) = ( 0 _C k ) ) |
|
| 4 | oveq1 | |- ( x = 0 -> ( x - k ) = ( 0 - k ) ) |
|
| 5 | 4 | oveq2d | |- ( x = 0 -> ( A ^ ( x - k ) ) = ( A ^ ( 0 - k ) ) ) |
| 6 | 5 | oveq1d | |- ( x = 0 -> ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) = ( ( A ^ ( 0 - k ) ) x. ( B ^ k ) ) ) |
| 7 | 3 6 | oveq12d | |- ( x = 0 -> ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) = ( ( 0 _C k ) x. ( ( A ^ ( 0 - k ) ) x. ( B ^ k ) ) ) ) |
| 8 | 7 | adantr | |- ( ( x = 0 /\ k e. ( 0 ... x ) ) -> ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) = ( ( 0 _C k ) x. ( ( A ^ ( 0 - k ) ) x. ( B ^ k ) ) ) ) |
| 9 | 2 8 | sumeq12dv | |- ( x = 0 -> sum_ k e. ( 0 ... x ) ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) = sum_ k e. ( 0 ... 0 ) ( ( 0 _C k ) x. ( ( A ^ ( 0 - k ) ) x. ( B ^ k ) ) ) ) |
| 10 | 1 9 | eqeq12d | |- ( x = 0 -> ( ( ( A + B ) ^ x ) = sum_ k e. ( 0 ... x ) ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) <-> ( ( A + B ) ^ 0 ) = sum_ k e. ( 0 ... 0 ) ( ( 0 _C k ) x. ( ( A ^ ( 0 - k ) ) x. ( B ^ k ) ) ) ) ) |
| 11 | 10 | imbi2d | |- ( x = 0 -> ( ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ x ) = sum_ k e. ( 0 ... x ) ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) ) <-> ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ 0 ) = sum_ k e. ( 0 ... 0 ) ( ( 0 _C k ) x. ( ( A ^ ( 0 - k ) ) x. ( B ^ k ) ) ) ) ) ) |
| 12 | oveq2 | |- ( x = n -> ( ( A + B ) ^ x ) = ( ( A + B ) ^ n ) ) |
|
| 13 | oveq2 | |- ( x = n -> ( 0 ... x ) = ( 0 ... n ) ) |
|
| 14 | oveq1 | |- ( x = n -> ( x _C k ) = ( n _C k ) ) |
|
| 15 | oveq1 | |- ( x = n -> ( x - k ) = ( n - k ) ) |
|
| 16 | 15 | oveq2d | |- ( x = n -> ( A ^ ( x - k ) ) = ( A ^ ( n - k ) ) ) |
| 17 | 16 | oveq1d | |- ( x = n -> ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) = ( ( A ^ ( n - k ) ) x. ( B ^ k ) ) ) |
| 18 | 14 17 | oveq12d | |- ( x = n -> ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) = ( ( n _C k ) x. ( ( A ^ ( n - k ) ) x. ( B ^ k ) ) ) ) |
| 19 | 18 | adantr | |- ( ( x = n /\ k e. ( 0 ... x ) ) -> ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) = ( ( n _C k ) x. ( ( A ^ ( n - k ) ) x. ( B ^ k ) ) ) ) |
| 20 | 13 19 | sumeq12dv | |- ( x = n -> sum_ k e. ( 0 ... x ) ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) = sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( A ^ ( n - k ) ) x. ( B ^ k ) ) ) ) |
| 21 | 12 20 | eqeq12d | |- ( x = n -> ( ( ( A + B ) ^ x ) = sum_ k e. ( 0 ... x ) ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) <-> ( ( A + B ) ^ n ) = sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( A ^ ( n - k ) ) x. ( B ^ k ) ) ) ) ) |
| 22 | 21 | imbi2d | |- ( x = n -> ( ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ x ) = sum_ k e. ( 0 ... x ) ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) ) <-> ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ n ) = sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( A ^ ( n - k ) ) x. ( B ^ k ) ) ) ) ) ) |
| 23 | oveq2 | |- ( x = ( n + 1 ) -> ( ( A + B ) ^ x ) = ( ( A + B ) ^ ( n + 1 ) ) ) |
|
| 24 | oveq2 | |- ( x = ( n + 1 ) -> ( 0 ... x ) = ( 0 ... ( n + 1 ) ) ) |
|
| 25 | oveq1 | |- ( x = ( n + 1 ) -> ( x _C k ) = ( ( n + 1 ) _C k ) ) |
|
| 26 | oveq1 | |- ( x = ( n + 1 ) -> ( x - k ) = ( ( n + 1 ) - k ) ) |
|
| 27 | 26 | oveq2d | |- ( x = ( n + 1 ) -> ( A ^ ( x - k ) ) = ( A ^ ( ( n + 1 ) - k ) ) ) |
| 28 | 27 | oveq1d | |- ( x = ( n + 1 ) -> ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) = ( ( A ^ ( ( n + 1 ) - k ) ) x. ( B ^ k ) ) ) |
| 29 | 25 28 | oveq12d | |- ( x = ( n + 1 ) -> ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) = ( ( ( n + 1 ) _C k ) x. ( ( A ^ ( ( n + 1 ) - k ) ) x. ( B ^ k ) ) ) ) |
| 30 | 29 | adantr | |- ( ( x = ( n + 1 ) /\ k e. ( 0 ... x ) ) -> ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) = ( ( ( n + 1 ) _C k ) x. ( ( A ^ ( ( n + 1 ) - k ) ) x. ( B ^ k ) ) ) ) |
| 31 | 24 30 | sumeq12dv | |- ( x = ( n + 1 ) -> sum_ k e. ( 0 ... x ) ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) = sum_ k e. ( 0 ... ( n + 1 ) ) ( ( ( n + 1 ) _C k ) x. ( ( A ^ ( ( n + 1 ) - k ) ) x. ( B ^ k ) ) ) ) |
| 32 | 23 31 | eqeq12d | |- ( x = ( n + 1 ) -> ( ( ( A + B ) ^ x ) = sum_ k e. ( 0 ... x ) ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) <-> ( ( A + B ) ^ ( n + 1 ) ) = sum_ k e. ( 0 ... ( n + 1 ) ) ( ( ( n + 1 ) _C k ) x. ( ( A ^ ( ( n + 1 ) - k ) ) x. ( B ^ k ) ) ) ) ) |
| 33 | 32 | imbi2d | |- ( x = ( n + 1 ) -> ( ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ x ) = sum_ k e. ( 0 ... x ) ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) ) <-> ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ ( n + 1 ) ) = sum_ k e. ( 0 ... ( n + 1 ) ) ( ( ( n + 1 ) _C k ) x. ( ( A ^ ( ( n + 1 ) - k ) ) x. ( B ^ k ) ) ) ) ) ) |
| 34 | oveq2 | |- ( x = N -> ( ( A + B ) ^ x ) = ( ( A + B ) ^ N ) ) |
|
| 35 | oveq2 | |- ( x = N -> ( 0 ... x ) = ( 0 ... N ) ) |
|
| 36 | oveq1 | |- ( x = N -> ( x _C k ) = ( N _C k ) ) |
|
| 37 | oveq1 | |- ( x = N -> ( x - k ) = ( N - k ) ) |
|
| 38 | 37 | oveq2d | |- ( x = N -> ( A ^ ( x - k ) ) = ( A ^ ( N - k ) ) ) |
| 39 | 38 | oveq1d | |- ( x = N -> ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) = ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) |
| 40 | 36 39 | oveq12d | |- ( x = N -> ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) = ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) ) |
| 41 | 40 | adantr | |- ( ( x = N /\ k e. ( 0 ... x ) ) -> ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) = ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) ) |
| 42 | 35 41 | sumeq12dv | |- ( x = N -> sum_ k e. ( 0 ... x ) ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) ) |
| 43 | 34 42 | eqeq12d | |- ( x = N -> ( ( ( A + B ) ^ x ) = sum_ k e. ( 0 ... x ) ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) <-> ( ( A + B ) ^ N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) ) ) |
| 44 | 43 | imbi2d | |- ( x = N -> ( ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ x ) = sum_ k e. ( 0 ... x ) ( ( x _C k ) x. ( ( A ^ ( x - k ) ) x. ( B ^ k ) ) ) ) <-> ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) ) ) ) |
| 45 | exp0 | |- ( A e. CC -> ( A ^ 0 ) = 1 ) |
|
| 46 | exp0 | |- ( B e. CC -> ( B ^ 0 ) = 1 ) |
|
| 47 | 45 46 | oveqan12d | |- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 0 ) x. ( B ^ 0 ) ) = ( 1 x. 1 ) ) |
| 48 | 1t1e1 | |- ( 1 x. 1 ) = 1 |
|
| 49 | 47 48 | eqtrdi | |- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 0 ) x. ( B ^ 0 ) ) = 1 ) |
| 50 | 49 | oveq2d | |- ( ( A e. CC /\ B e. CC ) -> ( 1 x. ( ( A ^ 0 ) x. ( B ^ 0 ) ) ) = ( 1 x. 1 ) ) |
| 51 | 50 48 | eqtrdi | |- ( ( A e. CC /\ B e. CC ) -> ( 1 x. ( ( A ^ 0 ) x. ( B ^ 0 ) ) ) = 1 ) |
| 52 | 0z | |- 0 e. ZZ |
|
| 53 | ax-1cn | |- 1 e. CC |
|
| 54 | 51 53 | eqeltrdi | |- ( ( A e. CC /\ B e. CC ) -> ( 1 x. ( ( A ^ 0 ) x. ( B ^ 0 ) ) ) e. CC ) |
| 55 | oveq2 | |- ( k = 0 -> ( 0 _C k ) = ( 0 _C 0 ) ) |
|
| 56 | 0nn0 | |- 0 e. NN0 |
|
| 57 | bcn0 | |- ( 0 e. NN0 -> ( 0 _C 0 ) = 1 ) |
|
| 58 | 56 57 | ax-mp | |- ( 0 _C 0 ) = 1 |
| 59 | 55 58 | eqtrdi | |- ( k = 0 -> ( 0 _C k ) = 1 ) |
| 60 | oveq2 | |- ( k = 0 -> ( 0 - k ) = ( 0 - 0 ) ) |
|
| 61 | 0m0e0 | |- ( 0 - 0 ) = 0 |
|
| 62 | 60 61 | eqtrdi | |- ( k = 0 -> ( 0 - k ) = 0 ) |
| 63 | 62 | oveq2d | |- ( k = 0 -> ( A ^ ( 0 - k ) ) = ( A ^ 0 ) ) |
| 64 | oveq2 | |- ( k = 0 -> ( B ^ k ) = ( B ^ 0 ) ) |
|
| 65 | 63 64 | oveq12d | |- ( k = 0 -> ( ( A ^ ( 0 - k ) ) x. ( B ^ k ) ) = ( ( A ^ 0 ) x. ( B ^ 0 ) ) ) |
| 66 | 59 65 | oveq12d | |- ( k = 0 -> ( ( 0 _C k ) x. ( ( A ^ ( 0 - k ) ) x. ( B ^ k ) ) ) = ( 1 x. ( ( A ^ 0 ) x. ( B ^ 0 ) ) ) ) |
| 67 | 66 | fsum1 | |- ( ( 0 e. ZZ /\ ( 1 x. ( ( A ^ 0 ) x. ( B ^ 0 ) ) ) e. CC ) -> sum_ k e. ( 0 ... 0 ) ( ( 0 _C k ) x. ( ( A ^ ( 0 - k ) ) x. ( B ^ k ) ) ) = ( 1 x. ( ( A ^ 0 ) x. ( B ^ 0 ) ) ) ) |
| 68 | 52 54 67 | sylancr | |- ( ( A e. CC /\ B e. CC ) -> sum_ k e. ( 0 ... 0 ) ( ( 0 _C k ) x. ( ( A ^ ( 0 - k ) ) x. ( B ^ k ) ) ) = ( 1 x. ( ( A ^ 0 ) x. ( B ^ 0 ) ) ) ) |
| 69 | addcl | |- ( ( A e. CC /\ B e. CC ) -> ( A + B ) e. CC ) |
|
| 70 | 69 | exp0d | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ 0 ) = 1 ) |
| 71 | 51 68 70 | 3eqtr4rd | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ 0 ) = sum_ k e. ( 0 ... 0 ) ( ( 0 _C k ) x. ( ( A ^ ( 0 - k ) ) x. ( B ^ k ) ) ) ) |
| 72 | simprl | |- ( ( n e. NN0 /\ ( A e. CC /\ B e. CC ) ) -> A e. CC ) |
|
| 73 | simprr | |- ( ( n e. NN0 /\ ( A e. CC /\ B e. CC ) ) -> B e. CC ) |
|
| 74 | simpl | |- ( ( n e. NN0 /\ ( A e. CC /\ B e. CC ) ) -> n e. NN0 ) |
|
| 75 | id | |- ( ( ( A + B ) ^ n ) = sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( A ^ ( n - k ) ) x. ( B ^ k ) ) ) -> ( ( A + B ) ^ n ) = sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( A ^ ( n - k ) ) x. ( B ^ k ) ) ) ) |
|
| 76 | 72 73 74 75 | binomlem | |- ( ( ( n e. NN0 /\ ( A e. CC /\ B e. CC ) ) /\ ( ( A + B ) ^ n ) = sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( A ^ ( n - k ) ) x. ( B ^ k ) ) ) ) -> ( ( A + B ) ^ ( n + 1 ) ) = sum_ k e. ( 0 ... ( n + 1 ) ) ( ( ( n + 1 ) _C k ) x. ( ( A ^ ( ( n + 1 ) - k ) ) x. ( B ^ k ) ) ) ) |
| 77 | 76 | exp31 | |- ( n e. NN0 -> ( ( A e. CC /\ B e. CC ) -> ( ( ( A + B ) ^ n ) = sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( A ^ ( n - k ) ) x. ( B ^ k ) ) ) -> ( ( A + B ) ^ ( n + 1 ) ) = sum_ k e. ( 0 ... ( n + 1 ) ) ( ( ( n + 1 ) _C k ) x. ( ( A ^ ( ( n + 1 ) - k ) ) x. ( B ^ k ) ) ) ) ) ) |
| 78 | 77 | a2d | |- ( n e. NN0 -> ( ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ n ) = sum_ k e. ( 0 ... n ) ( ( n _C k ) x. ( ( A ^ ( n - k ) ) x. ( B ^ k ) ) ) ) -> ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ ( n + 1 ) ) = sum_ k e. ( 0 ... ( n + 1 ) ) ( ( ( n + 1 ) _C k ) x. ( ( A ^ ( ( n + 1 ) - k ) ) x. ( B ^ k ) ) ) ) ) ) |
| 79 | 11 22 33 44 71 78 | nn0ind | |- ( N e. NN0 -> ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) ^ N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) ) ) |
| 80 | 79 | impcom | |- ( ( ( A e. CC /\ B e. CC ) /\ N e. NN0 ) -> ( ( A + B ) ^ N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) ) |
| 81 | 80 | 3impa | |- ( ( A e. CC /\ B e. CC /\ N e. NN0 ) -> ( ( A + B ) ^ N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( A ^ ( N - k ) ) x. ( B ^ k ) ) ) ) |