This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dvgt0 and dvlt0 . (Contributed by Mario Carneiro, 19-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvgt0.a | |- ( ph -> A e. RR ) |
|
| dvgt0.b | |- ( ph -> B e. RR ) |
||
| dvgt0.f | |- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
||
| dvgt0lem.d | |- ( ph -> ( RR _D F ) : ( A (,) B ) --> S ) |
||
| Assertion | dvgt0lem1 | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( ( ( F ` Y ) - ( F ` X ) ) / ( Y - X ) ) e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvgt0.a | |- ( ph -> A e. RR ) |
|
| 2 | dvgt0.b | |- ( ph -> B e. RR ) |
|
| 3 | dvgt0.f | |- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
|
| 4 | dvgt0lem.d | |- ( ph -> ( RR _D F ) : ( A (,) B ) --> S ) |
|
| 5 | iccssxr | |- ( A [,] B ) C_ RR* |
|
| 6 | simplrl | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> X e. ( A [,] B ) ) |
|
| 7 | 5 6 | sselid | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> X e. RR* ) |
| 8 | simplrr | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> Y e. ( A [,] B ) ) |
|
| 9 | 5 8 | sselid | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> Y e. RR* ) |
| 10 | iccssre | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
|
| 11 | 1 2 10 | syl2anc | |- ( ph -> ( A [,] B ) C_ RR ) |
| 12 | 11 | ad2antrr | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( A [,] B ) C_ RR ) |
| 13 | 12 6 | sseldd | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> X e. RR ) |
| 14 | 12 8 | sseldd | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> Y e. RR ) |
| 15 | simpr | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> X < Y ) |
|
| 16 | 13 14 15 | ltled | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> X <_ Y ) |
| 17 | ubicc2 | |- ( ( X e. RR* /\ Y e. RR* /\ X <_ Y ) -> Y e. ( X [,] Y ) ) |
|
| 18 | 7 9 16 17 | syl3anc | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> Y e. ( X [,] Y ) ) |
| 19 | 18 | fvresd | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( ( F |` ( X [,] Y ) ) ` Y ) = ( F ` Y ) ) |
| 20 | lbicc2 | |- ( ( X e. RR* /\ Y e. RR* /\ X <_ Y ) -> X e. ( X [,] Y ) ) |
|
| 21 | 7 9 16 20 | syl3anc | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> X e. ( X [,] Y ) ) |
| 22 | 21 | fvresd | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( ( F |` ( X [,] Y ) ) ` X ) = ( F ` X ) ) |
| 23 | 19 22 | oveq12d | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( ( ( F |` ( X [,] Y ) ) ` Y ) - ( ( F |` ( X [,] Y ) ) ` X ) ) = ( ( F ` Y ) - ( F ` X ) ) ) |
| 24 | 23 | oveq1d | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( ( ( ( F |` ( X [,] Y ) ) ` Y ) - ( ( F |` ( X [,] Y ) ) ` X ) ) / ( Y - X ) ) = ( ( ( F ` Y ) - ( F ` X ) ) / ( Y - X ) ) ) |
| 25 | iccss2 | |- ( ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) -> ( X [,] Y ) C_ ( A [,] B ) ) |
|
| 26 | 25 | ad2antlr | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( X [,] Y ) C_ ( A [,] B ) ) |
| 27 | 3 | ad2antrr | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> F e. ( ( A [,] B ) -cn-> RR ) ) |
| 28 | rescncf | |- ( ( X [,] Y ) C_ ( A [,] B ) -> ( F e. ( ( A [,] B ) -cn-> RR ) -> ( F |` ( X [,] Y ) ) e. ( ( X [,] Y ) -cn-> RR ) ) ) |
|
| 29 | 26 27 28 | sylc | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( F |` ( X [,] Y ) ) e. ( ( X [,] Y ) -cn-> RR ) ) |
| 30 | 4 | ad2antrr | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( RR _D F ) : ( A (,) B ) --> S ) |
| 31 | 1 | ad2antrr | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> A e. RR ) |
| 32 | 31 | rexrd | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> A e. RR* ) |
| 33 | 2 | ad2antrr | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> B e. RR ) |
| 34 | elicc2 | |- ( ( A e. RR /\ B e. RR ) -> ( X e. ( A [,] B ) <-> ( X e. RR /\ A <_ X /\ X <_ B ) ) ) |
|
| 35 | 31 33 34 | syl2anc | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( X e. ( A [,] B ) <-> ( X e. RR /\ A <_ X /\ X <_ B ) ) ) |
| 36 | 6 35 | mpbid | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( X e. RR /\ A <_ X /\ X <_ B ) ) |
| 37 | 36 | simp2d | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> A <_ X ) |
| 38 | iooss1 | |- ( ( A e. RR* /\ A <_ X ) -> ( X (,) Y ) C_ ( A (,) Y ) ) |
|
| 39 | 32 37 38 | syl2anc | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( X (,) Y ) C_ ( A (,) Y ) ) |
| 40 | 33 | rexrd | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> B e. RR* ) |
| 41 | elicc2 | |- ( ( A e. RR /\ B e. RR ) -> ( Y e. ( A [,] B ) <-> ( Y e. RR /\ A <_ Y /\ Y <_ B ) ) ) |
|
| 42 | 31 33 41 | syl2anc | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( Y e. ( A [,] B ) <-> ( Y e. RR /\ A <_ Y /\ Y <_ B ) ) ) |
| 43 | 8 42 | mpbid | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( Y e. RR /\ A <_ Y /\ Y <_ B ) ) |
| 44 | 43 | simp3d | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> Y <_ B ) |
| 45 | iooss2 | |- ( ( B e. RR* /\ Y <_ B ) -> ( A (,) Y ) C_ ( A (,) B ) ) |
|
| 46 | 40 44 45 | syl2anc | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( A (,) Y ) C_ ( A (,) B ) ) |
| 47 | 39 46 | sstrd | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( X (,) Y ) C_ ( A (,) B ) ) |
| 48 | 30 47 | fssresd | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( ( RR _D F ) |` ( X (,) Y ) ) : ( X (,) Y ) --> S ) |
| 49 | ax-resscn | |- RR C_ CC |
|
| 50 | 49 | a1i | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> RR C_ CC ) |
| 51 | cncff | |- ( F e. ( ( A [,] B ) -cn-> RR ) -> F : ( A [,] B ) --> RR ) |
|
| 52 | 3 51 | syl | |- ( ph -> F : ( A [,] B ) --> RR ) |
| 53 | 52 | ad2antrr | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> F : ( A [,] B ) --> RR ) |
| 54 | fss | |- ( ( F : ( A [,] B ) --> RR /\ RR C_ CC ) -> F : ( A [,] B ) --> CC ) |
|
| 55 | 53 49 54 | sylancl | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> F : ( A [,] B ) --> CC ) |
| 56 | iccssre | |- ( ( X e. RR /\ Y e. RR ) -> ( X [,] Y ) C_ RR ) |
|
| 57 | 13 14 56 | syl2anc | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( X [,] Y ) C_ RR ) |
| 58 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 59 | tgioo4 | |- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
|
| 60 | 58 59 | dvres | |- ( ( ( RR C_ CC /\ F : ( A [,] B ) --> CC ) /\ ( ( A [,] B ) C_ RR /\ ( X [,] Y ) C_ RR ) ) -> ( RR _D ( F |` ( X [,] Y ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( X [,] Y ) ) ) ) |
| 61 | 50 55 12 57 60 | syl22anc | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( RR _D ( F |` ( X [,] Y ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( X [,] Y ) ) ) ) |
| 62 | iccntr | |- ( ( X e. RR /\ Y e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( X [,] Y ) ) = ( X (,) Y ) ) |
|
| 63 | 13 14 62 | syl2anc | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( X [,] Y ) ) = ( X (,) Y ) ) |
| 64 | 63 | reseq2d | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( X [,] Y ) ) ) = ( ( RR _D F ) |` ( X (,) Y ) ) ) |
| 65 | 61 64 | eqtrd | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( RR _D ( F |` ( X [,] Y ) ) ) = ( ( RR _D F ) |` ( X (,) Y ) ) ) |
| 66 | 65 | feq1d | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( ( RR _D ( F |` ( X [,] Y ) ) ) : ( X (,) Y ) --> S <-> ( ( RR _D F ) |` ( X (,) Y ) ) : ( X (,) Y ) --> S ) ) |
| 67 | 48 66 | mpbird | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( RR _D ( F |` ( X [,] Y ) ) ) : ( X (,) Y ) --> S ) |
| 68 | 67 | fdmd | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> dom ( RR _D ( F |` ( X [,] Y ) ) ) = ( X (,) Y ) ) |
| 69 | 13 14 15 29 68 | mvth | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> E. z e. ( X (,) Y ) ( ( RR _D ( F |` ( X [,] Y ) ) ) ` z ) = ( ( ( ( F |` ( X [,] Y ) ) ` Y ) - ( ( F |` ( X [,] Y ) ) ` X ) ) / ( Y - X ) ) ) |
| 70 | 67 | ffvelcdmda | |- ( ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) /\ z e. ( X (,) Y ) ) -> ( ( RR _D ( F |` ( X [,] Y ) ) ) ` z ) e. S ) |
| 71 | eleq1 | |- ( ( ( RR _D ( F |` ( X [,] Y ) ) ) ` z ) = ( ( ( ( F |` ( X [,] Y ) ) ` Y ) - ( ( F |` ( X [,] Y ) ) ` X ) ) / ( Y - X ) ) -> ( ( ( RR _D ( F |` ( X [,] Y ) ) ) ` z ) e. S <-> ( ( ( ( F |` ( X [,] Y ) ) ` Y ) - ( ( F |` ( X [,] Y ) ) ` X ) ) / ( Y - X ) ) e. S ) ) |
|
| 72 | 70 71 | syl5ibcom | |- ( ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) /\ z e. ( X (,) Y ) ) -> ( ( ( RR _D ( F |` ( X [,] Y ) ) ) ` z ) = ( ( ( ( F |` ( X [,] Y ) ) ` Y ) - ( ( F |` ( X [,] Y ) ) ` X ) ) / ( Y - X ) ) -> ( ( ( ( F |` ( X [,] Y ) ) ` Y ) - ( ( F |` ( X [,] Y ) ) ` X ) ) / ( Y - X ) ) e. S ) ) |
| 73 | 72 | rexlimdva | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( E. z e. ( X (,) Y ) ( ( RR _D ( F |` ( X [,] Y ) ) ) ` z ) = ( ( ( ( F |` ( X [,] Y ) ) ` Y ) - ( ( F |` ( X [,] Y ) ) ` X ) ) / ( Y - X ) ) -> ( ( ( ( F |` ( X [,] Y ) ) ` Y ) - ( ( F |` ( X [,] Y ) ) ` X ) ) / ( Y - X ) ) e. S ) ) |
| 74 | 69 73 | mpd | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( ( ( ( F |` ( X [,] Y ) ) ` Y ) - ( ( F |` ( X [,] Y ) ) ` X ) ) / ( Y - X ) ) e. S ) |
| 75 | 24 74 | eqeltrrd | |- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( ( ( F ` Y ) - ( F ` X ) ) / ( Y - X ) ) e. S ) |