This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dvgt0 and dvlt0 . (Contributed by Mario Carneiro, 19-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvgt0.a | |- ( ph -> A e. RR ) |
|
| dvgt0.b | |- ( ph -> B e. RR ) |
||
| dvgt0.f | |- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
||
| dvgt0lem.d | |- ( ph -> ( RR _D F ) : ( A (,) B ) --> S ) |
||
| dvgt0lem.o | |- O Or RR |
||
| dvgt0lem.i | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( F ` x ) O ( F ` y ) ) |
||
| Assertion | dvgt0lem2 | |- ( ph -> F Isom < , O ( ( A [,] B ) , ran F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvgt0.a | |- ( ph -> A e. RR ) |
|
| 2 | dvgt0.b | |- ( ph -> B e. RR ) |
|
| 3 | dvgt0.f | |- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
|
| 4 | dvgt0lem.d | |- ( ph -> ( RR _D F ) : ( A (,) B ) --> S ) |
|
| 5 | dvgt0lem.o | |- O Or RR |
|
| 6 | dvgt0lem.i | |- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( F ` x ) O ( F ` y ) ) |
|
| 7 | 6 | ex | |- ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) -> ( x < y -> ( F ` x ) O ( F ` y ) ) ) |
| 8 | 7 | ralrimivva | |- ( ph -> A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( x < y -> ( F ` x ) O ( F ` y ) ) ) |
| 9 | iccssre | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
|
| 10 | 1 2 9 | syl2anc | |- ( ph -> ( A [,] B ) C_ RR ) |
| 11 | ltso | |- < Or RR |
|
| 12 | soss | |- ( ( A [,] B ) C_ RR -> ( < Or RR -> < Or ( A [,] B ) ) ) |
|
| 13 | 10 11 12 | mpisyl | |- ( ph -> < Or ( A [,] B ) ) |
| 14 | 5 | a1i | |- ( ph -> O Or RR ) |
| 15 | cncff | |- ( F e. ( ( A [,] B ) -cn-> RR ) -> F : ( A [,] B ) --> RR ) |
|
| 16 | 3 15 | syl | |- ( ph -> F : ( A [,] B ) --> RR ) |
| 17 | ssidd | |- ( ph -> ( A [,] B ) C_ ( A [,] B ) ) |
|
| 18 | soisores | |- ( ( ( < Or ( A [,] B ) /\ O Or RR ) /\ ( F : ( A [,] B ) --> RR /\ ( A [,] B ) C_ ( A [,] B ) ) ) -> ( ( F |` ( A [,] B ) ) Isom < , O ( ( A [,] B ) , ( F " ( A [,] B ) ) ) <-> A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( x < y -> ( F ` x ) O ( F ` y ) ) ) ) |
|
| 19 | 13 14 16 17 18 | syl22anc | |- ( ph -> ( ( F |` ( A [,] B ) ) Isom < , O ( ( A [,] B ) , ( F " ( A [,] B ) ) ) <-> A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( x < y -> ( F ` x ) O ( F ` y ) ) ) ) |
| 20 | 8 19 | mpbird | |- ( ph -> ( F |` ( A [,] B ) ) Isom < , O ( ( A [,] B ) , ( F " ( A [,] B ) ) ) ) |
| 21 | ffn | |- ( F : ( A [,] B ) --> RR -> F Fn ( A [,] B ) ) |
|
| 22 | 3 15 21 | 3syl | |- ( ph -> F Fn ( A [,] B ) ) |
| 23 | fnresdm | |- ( F Fn ( A [,] B ) -> ( F |` ( A [,] B ) ) = F ) |
|
| 24 | isoeq1 | |- ( ( F |` ( A [,] B ) ) = F -> ( ( F |` ( A [,] B ) ) Isom < , O ( ( A [,] B ) , ( F " ( A [,] B ) ) ) <-> F Isom < , O ( ( A [,] B ) , ( F " ( A [,] B ) ) ) ) ) |
|
| 25 | 22 23 24 | 3syl | |- ( ph -> ( ( F |` ( A [,] B ) ) Isom < , O ( ( A [,] B ) , ( F " ( A [,] B ) ) ) <-> F Isom < , O ( ( A [,] B ) , ( F " ( A [,] B ) ) ) ) ) |
| 26 | 20 25 | mpbid | |- ( ph -> F Isom < , O ( ( A [,] B ) , ( F " ( A [,] B ) ) ) ) |
| 27 | fnima | |- ( F Fn ( A [,] B ) -> ( F " ( A [,] B ) ) = ran F ) |
|
| 28 | isoeq5 | |- ( ( F " ( A [,] B ) ) = ran F -> ( F Isom < , O ( ( A [,] B ) , ( F " ( A [,] B ) ) ) <-> F Isom < , O ( ( A [,] B ) , ran F ) ) ) |
|
| 29 | 22 27 28 | 3syl | |- ( ph -> ( F Isom < , O ( ( A [,] B ) , ( F " ( A [,] B ) ) ) <-> F Isom < , O ( ( A [,] B ) , ran F ) ) ) |
| 30 | 26 29 | mpbid | |- ( ph -> F Isom < , O ( ( A [,] B ) , ran F ) ) |