This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Derivative of the sine and cosine functions. (Contributed by Mario Carneiro, 21-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvsincos | |- ( ( CC _D sin ) = cos /\ ( CC _D cos ) = ( x e. CC |-> -u ( sin ` x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnelprrecn | |- CC e. { RR , CC } |
|
| 2 | 1 | a1i | |- ( T. -> CC e. { RR , CC } ) |
| 3 | ax-icn | |- _i e. CC |
|
| 4 | 3 | a1i | |- ( ( T. /\ x e. CC ) -> _i e. CC ) |
| 5 | simpr | |- ( ( T. /\ x e. CC ) -> x e. CC ) |
|
| 6 | 4 5 | mulcld | |- ( ( T. /\ x e. CC ) -> ( _i x. x ) e. CC ) |
| 7 | efcl | |- ( ( _i x. x ) e. CC -> ( exp ` ( _i x. x ) ) e. CC ) |
|
| 8 | 6 7 | syl | |- ( ( T. /\ x e. CC ) -> ( exp ` ( _i x. x ) ) e. CC ) |
| 9 | ine0 | |- _i =/= 0 |
|
| 10 | 9 | a1i | |- ( ( T. /\ x e. CC ) -> _i =/= 0 ) |
| 11 | 8 4 10 | divcld | |- ( ( T. /\ x e. CC ) -> ( ( exp ` ( _i x. x ) ) / _i ) e. CC ) |
| 12 | negicn | |- -u _i e. CC |
|
| 13 | mulcl | |- ( ( -u _i e. CC /\ x e. CC ) -> ( -u _i x. x ) e. CC ) |
|
| 14 | 12 5 13 | sylancr | |- ( ( T. /\ x e. CC ) -> ( -u _i x. x ) e. CC ) |
| 15 | efcl | |- ( ( -u _i x. x ) e. CC -> ( exp ` ( -u _i x. x ) ) e. CC ) |
|
| 16 | 14 15 | syl | |- ( ( T. /\ x e. CC ) -> ( exp ` ( -u _i x. x ) ) e. CC ) |
| 17 | 16 4 10 | divcld | |- ( ( T. /\ x e. CC ) -> ( ( exp ` ( -u _i x. x ) ) / _i ) e. CC ) |
| 18 | 17 | negcld | |- ( ( T. /\ x e. CC ) -> -u ( ( exp ` ( -u _i x. x ) ) / _i ) e. CC ) |
| 19 | 11 18 | addcld | |- ( ( T. /\ x e. CC ) -> ( ( ( exp ` ( _i x. x ) ) / _i ) + -u ( ( exp ` ( -u _i x. x ) ) / _i ) ) e. CC ) |
| 20 | 8 16 | addcld | |- ( ( T. /\ x e. CC ) -> ( ( exp ` ( _i x. x ) ) + ( exp ` ( -u _i x. x ) ) ) e. CC ) |
| 21 | 8 4 | mulcld | |- ( ( T. /\ x e. CC ) -> ( ( exp ` ( _i x. x ) ) x. _i ) e. CC ) |
| 22 | efcl | |- ( y e. CC -> ( exp ` y ) e. CC ) |
|
| 23 | 22 | adantl | |- ( ( T. /\ y e. CC ) -> ( exp ` y ) e. CC ) |
| 24 | 1cnd | |- ( ( T. /\ x e. CC ) -> 1 e. CC ) |
|
| 25 | 2 | dvmptid | |- ( T. -> ( CC _D ( x e. CC |-> x ) ) = ( x e. CC |-> 1 ) ) |
| 26 | 3 | a1i | |- ( T. -> _i e. CC ) |
| 27 | 2 5 24 25 26 | dvmptcmul | |- ( T. -> ( CC _D ( x e. CC |-> ( _i x. x ) ) ) = ( x e. CC |-> ( _i x. 1 ) ) ) |
| 28 | 3 | mulridi | |- ( _i x. 1 ) = _i |
| 29 | 28 | mpteq2i | |- ( x e. CC |-> ( _i x. 1 ) ) = ( x e. CC |-> _i ) |
| 30 | 27 29 | eqtrdi | |- ( T. -> ( CC _D ( x e. CC |-> ( _i x. x ) ) ) = ( x e. CC |-> _i ) ) |
| 31 | eff | |- exp : CC --> CC |
|
| 32 | 31 | a1i | |- ( T. -> exp : CC --> CC ) |
| 33 | 32 | feqmptd | |- ( T. -> exp = ( y e. CC |-> ( exp ` y ) ) ) |
| 34 | 33 | oveq2d | |- ( T. -> ( CC _D exp ) = ( CC _D ( y e. CC |-> ( exp ` y ) ) ) ) |
| 35 | dvef | |- ( CC _D exp ) = exp |
|
| 36 | 35 33 | eqtrid | |- ( T. -> ( CC _D exp ) = ( y e. CC |-> ( exp ` y ) ) ) |
| 37 | 34 36 | eqtr3d | |- ( T. -> ( CC _D ( y e. CC |-> ( exp ` y ) ) ) = ( y e. CC |-> ( exp ` y ) ) ) |
| 38 | fveq2 | |- ( y = ( _i x. x ) -> ( exp ` y ) = ( exp ` ( _i x. x ) ) ) |
|
| 39 | 2 2 6 4 23 23 30 37 38 38 | dvmptco | |- ( T. -> ( CC _D ( x e. CC |-> ( exp ` ( _i x. x ) ) ) ) = ( x e. CC |-> ( ( exp ` ( _i x. x ) ) x. _i ) ) ) |
| 40 | 9 | a1i | |- ( T. -> _i =/= 0 ) |
| 41 | 2 8 21 39 26 40 | dvmptdivc | |- ( T. -> ( CC _D ( x e. CC |-> ( ( exp ` ( _i x. x ) ) / _i ) ) ) = ( x e. CC |-> ( ( ( exp ` ( _i x. x ) ) x. _i ) / _i ) ) ) |
| 42 | 8 4 10 | divcan4d | |- ( ( T. /\ x e. CC ) -> ( ( ( exp ` ( _i x. x ) ) x. _i ) / _i ) = ( exp ` ( _i x. x ) ) ) |
| 43 | 42 | mpteq2dva | |- ( T. -> ( x e. CC |-> ( ( ( exp ` ( _i x. x ) ) x. _i ) / _i ) ) = ( x e. CC |-> ( exp ` ( _i x. x ) ) ) ) |
| 44 | 41 43 | eqtrd | |- ( T. -> ( CC _D ( x e. CC |-> ( ( exp ` ( _i x. x ) ) / _i ) ) ) = ( x e. CC |-> ( exp ` ( _i x. x ) ) ) ) |
| 45 | mulcl | |- ( ( ( exp ` ( -u _i x. x ) ) e. CC /\ -u _i e. CC ) -> ( ( exp ` ( -u _i x. x ) ) x. -u _i ) e. CC ) |
|
| 46 | 16 12 45 | sylancl | |- ( ( T. /\ x e. CC ) -> ( ( exp ` ( -u _i x. x ) ) x. -u _i ) e. CC ) |
| 47 | 46 4 10 | divcld | |- ( ( T. /\ x e. CC ) -> ( ( ( exp ` ( -u _i x. x ) ) x. -u _i ) / _i ) e. CC ) |
| 48 | 12 | a1i | |- ( ( T. /\ x e. CC ) -> -u _i e. CC ) |
| 49 | 12 | a1i | |- ( T. -> -u _i e. CC ) |
| 50 | 2 5 24 25 49 | dvmptcmul | |- ( T. -> ( CC _D ( x e. CC |-> ( -u _i x. x ) ) ) = ( x e. CC |-> ( -u _i x. 1 ) ) ) |
| 51 | 12 | mulridi | |- ( -u _i x. 1 ) = -u _i |
| 52 | 51 | mpteq2i | |- ( x e. CC |-> ( -u _i x. 1 ) ) = ( x e. CC |-> -u _i ) |
| 53 | 50 52 | eqtrdi | |- ( T. -> ( CC _D ( x e. CC |-> ( -u _i x. x ) ) ) = ( x e. CC |-> -u _i ) ) |
| 54 | fveq2 | |- ( y = ( -u _i x. x ) -> ( exp ` y ) = ( exp ` ( -u _i x. x ) ) ) |
|
| 55 | 2 2 14 48 23 23 53 37 54 54 | dvmptco | |- ( T. -> ( CC _D ( x e. CC |-> ( exp ` ( -u _i x. x ) ) ) ) = ( x e. CC |-> ( ( exp ` ( -u _i x. x ) ) x. -u _i ) ) ) |
| 56 | 2 16 46 55 26 40 | dvmptdivc | |- ( T. -> ( CC _D ( x e. CC |-> ( ( exp ` ( -u _i x. x ) ) / _i ) ) ) = ( x e. CC |-> ( ( ( exp ` ( -u _i x. x ) ) x. -u _i ) / _i ) ) ) |
| 57 | 2 17 47 56 | dvmptneg | |- ( T. -> ( CC _D ( x e. CC |-> -u ( ( exp ` ( -u _i x. x ) ) / _i ) ) ) = ( x e. CC |-> -u ( ( ( exp ` ( -u _i x. x ) ) x. -u _i ) / _i ) ) ) |
| 58 | 46 4 10 | divneg2d | |- ( ( T. /\ x e. CC ) -> -u ( ( ( exp ` ( -u _i x. x ) ) x. -u _i ) / _i ) = ( ( ( exp ` ( -u _i x. x ) ) x. -u _i ) / -u _i ) ) |
| 59 | 3 9 | negne0i | |- -u _i =/= 0 |
| 60 | 59 | a1i | |- ( ( T. /\ x e. CC ) -> -u _i =/= 0 ) |
| 61 | 16 48 60 | divcan4d | |- ( ( T. /\ x e. CC ) -> ( ( ( exp ` ( -u _i x. x ) ) x. -u _i ) / -u _i ) = ( exp ` ( -u _i x. x ) ) ) |
| 62 | 58 61 | eqtrd | |- ( ( T. /\ x e. CC ) -> -u ( ( ( exp ` ( -u _i x. x ) ) x. -u _i ) / _i ) = ( exp ` ( -u _i x. x ) ) ) |
| 63 | 62 | mpteq2dva | |- ( T. -> ( x e. CC |-> -u ( ( ( exp ` ( -u _i x. x ) ) x. -u _i ) / _i ) ) = ( x e. CC |-> ( exp ` ( -u _i x. x ) ) ) ) |
| 64 | 57 63 | eqtrd | |- ( T. -> ( CC _D ( x e. CC |-> -u ( ( exp ` ( -u _i x. x ) ) / _i ) ) ) = ( x e. CC |-> ( exp ` ( -u _i x. x ) ) ) ) |
| 65 | 2 11 8 44 18 16 64 | dvmptadd | |- ( T. -> ( CC _D ( x e. CC |-> ( ( ( exp ` ( _i x. x ) ) / _i ) + -u ( ( exp ` ( -u _i x. x ) ) / _i ) ) ) ) = ( x e. CC |-> ( ( exp ` ( _i x. x ) ) + ( exp ` ( -u _i x. x ) ) ) ) ) |
| 66 | 2cnd | |- ( T. -> 2 e. CC ) |
|
| 67 | 2ne0 | |- 2 =/= 0 |
|
| 68 | 67 | a1i | |- ( T. -> 2 =/= 0 ) |
| 69 | 2 19 20 65 66 68 | dvmptdivc | |- ( T. -> ( CC _D ( x e. CC |-> ( ( ( ( exp ` ( _i x. x ) ) / _i ) + -u ( ( exp ` ( -u _i x. x ) ) / _i ) ) / 2 ) ) ) = ( x e. CC |-> ( ( ( exp ` ( _i x. x ) ) + ( exp ` ( -u _i x. x ) ) ) / 2 ) ) ) |
| 70 | df-sin | |- sin = ( x e. CC |-> ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) / ( 2 x. _i ) ) ) |
|
| 71 | 8 16 | subcld | |- ( ( T. /\ x e. CC ) -> ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) e. CC ) |
| 72 | 2cnd | |- ( ( T. /\ x e. CC ) -> 2 e. CC ) |
|
| 73 | 67 | a1i | |- ( ( T. /\ x e. CC ) -> 2 =/= 0 ) |
| 74 | 71 4 72 10 73 | divdiv1d | |- ( ( T. /\ x e. CC ) -> ( ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) / _i ) / 2 ) = ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) / ( _i x. 2 ) ) ) |
| 75 | 2cn | |- 2 e. CC |
|
| 76 | 3 75 | mulcomi | |- ( _i x. 2 ) = ( 2 x. _i ) |
| 77 | 76 | oveq2i | |- ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) / ( _i x. 2 ) ) = ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) / ( 2 x. _i ) ) |
| 78 | 74 77 | eqtrdi | |- ( ( T. /\ x e. CC ) -> ( ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) / _i ) / 2 ) = ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) / ( 2 x. _i ) ) ) |
| 79 | 8 16 4 10 | divsubdird | |- ( ( T. /\ x e. CC ) -> ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) / _i ) = ( ( ( exp ` ( _i x. x ) ) / _i ) - ( ( exp ` ( -u _i x. x ) ) / _i ) ) ) |
| 80 | 11 17 | negsubd | |- ( ( T. /\ x e. CC ) -> ( ( ( exp ` ( _i x. x ) ) / _i ) + -u ( ( exp ` ( -u _i x. x ) ) / _i ) ) = ( ( ( exp ` ( _i x. x ) ) / _i ) - ( ( exp ` ( -u _i x. x ) ) / _i ) ) ) |
| 81 | 79 80 | eqtr4d | |- ( ( T. /\ x e. CC ) -> ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) / _i ) = ( ( ( exp ` ( _i x. x ) ) / _i ) + -u ( ( exp ` ( -u _i x. x ) ) / _i ) ) ) |
| 82 | 81 | oveq1d | |- ( ( T. /\ x e. CC ) -> ( ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) / _i ) / 2 ) = ( ( ( ( exp ` ( _i x. x ) ) / _i ) + -u ( ( exp ` ( -u _i x. x ) ) / _i ) ) / 2 ) ) |
| 83 | 78 82 | eqtr3d | |- ( ( T. /\ x e. CC ) -> ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) / ( 2 x. _i ) ) = ( ( ( ( exp ` ( _i x. x ) ) / _i ) + -u ( ( exp ` ( -u _i x. x ) ) / _i ) ) / 2 ) ) |
| 84 | 83 | mpteq2dva | |- ( T. -> ( x e. CC |-> ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) / ( 2 x. _i ) ) ) = ( x e. CC |-> ( ( ( ( exp ` ( _i x. x ) ) / _i ) + -u ( ( exp ` ( -u _i x. x ) ) / _i ) ) / 2 ) ) ) |
| 85 | 70 84 | eqtrid | |- ( T. -> sin = ( x e. CC |-> ( ( ( ( exp ` ( _i x. x ) ) / _i ) + -u ( ( exp ` ( -u _i x. x ) ) / _i ) ) / 2 ) ) ) |
| 86 | 85 | oveq2d | |- ( T. -> ( CC _D sin ) = ( CC _D ( x e. CC |-> ( ( ( ( exp ` ( _i x. x ) ) / _i ) + -u ( ( exp ` ( -u _i x. x ) ) / _i ) ) / 2 ) ) ) ) |
| 87 | df-cos | |- cos = ( x e. CC |-> ( ( ( exp ` ( _i x. x ) ) + ( exp ` ( -u _i x. x ) ) ) / 2 ) ) |
|
| 88 | 87 | a1i | |- ( T. -> cos = ( x e. CC |-> ( ( ( exp ` ( _i x. x ) ) + ( exp ` ( -u _i x. x ) ) ) / 2 ) ) ) |
| 89 | 69 86 88 | 3eqtr4d | |- ( T. -> ( CC _D sin ) = cos ) |
| 90 | 21 46 | addcld | |- ( ( T. /\ x e. CC ) -> ( ( ( exp ` ( _i x. x ) ) x. _i ) + ( ( exp ` ( -u _i x. x ) ) x. -u _i ) ) e. CC ) |
| 91 | 2 8 21 39 16 46 55 | dvmptadd | |- ( T. -> ( CC _D ( x e. CC |-> ( ( exp ` ( _i x. x ) ) + ( exp ` ( -u _i x. x ) ) ) ) ) = ( x e. CC |-> ( ( ( exp ` ( _i x. x ) ) x. _i ) + ( ( exp ` ( -u _i x. x ) ) x. -u _i ) ) ) ) |
| 92 | 2 20 90 91 66 68 | dvmptdivc | |- ( T. -> ( CC _D ( x e. CC |-> ( ( ( exp ` ( _i x. x ) ) + ( exp ` ( -u _i x. x ) ) ) / 2 ) ) ) = ( x e. CC |-> ( ( ( ( exp ` ( _i x. x ) ) x. _i ) + ( ( exp ` ( -u _i x. x ) ) x. -u _i ) ) / 2 ) ) ) |
| 93 | 88 | oveq2d | |- ( T. -> ( CC _D cos ) = ( CC _D ( x e. CC |-> ( ( ( exp ` ( _i x. x ) ) + ( exp ` ( -u _i x. x ) ) ) / 2 ) ) ) ) |
| 94 | 71 4 10 | divcld | |- ( ( T. /\ x e. CC ) -> ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) / _i ) e. CC ) |
| 95 | 94 72 73 | divnegd | |- ( ( T. /\ x e. CC ) -> -u ( ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) / _i ) / 2 ) = ( -u ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) / _i ) / 2 ) ) |
| 96 | sinval | |- ( x e. CC -> ( sin ` x ) = ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) / ( 2 x. _i ) ) ) |
|
| 97 | 96 | adantl | |- ( ( T. /\ x e. CC ) -> ( sin ` x ) = ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) / ( 2 x. _i ) ) ) |
| 98 | 97 78 | eqtr4d | |- ( ( T. /\ x e. CC ) -> ( sin ` x ) = ( ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) / _i ) / 2 ) ) |
| 99 | 98 | negeqd | |- ( ( T. /\ x e. CC ) -> -u ( sin ` x ) = -u ( ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) / _i ) / 2 ) ) |
| 100 | 3 | negnegi | |- -u -u _i = _i |
| 101 | 100 | oveq2i | |- ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) x. -u -u _i ) = ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) x. _i ) |
| 102 | mulneg2 | |- ( ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) e. CC /\ -u _i e. CC ) -> ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) x. -u -u _i ) = -u ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) x. -u _i ) ) |
|
| 103 | 71 12 102 | sylancl | |- ( ( T. /\ x e. CC ) -> ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) x. -u -u _i ) = -u ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) x. -u _i ) ) |
| 104 | 101 103 | eqtr3id | |- ( ( T. /\ x e. CC ) -> ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) x. _i ) = -u ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) x. -u _i ) ) |
| 105 | mulcl | |- ( ( ( exp ` ( -u _i x. x ) ) e. CC /\ _i e. CC ) -> ( ( exp ` ( -u _i x. x ) ) x. _i ) e. CC ) |
|
| 106 | 16 3 105 | sylancl | |- ( ( T. /\ x e. CC ) -> ( ( exp ` ( -u _i x. x ) ) x. _i ) e. CC ) |
| 107 | 21 106 | negsubd | |- ( ( T. /\ x e. CC ) -> ( ( ( exp ` ( _i x. x ) ) x. _i ) + -u ( ( exp ` ( -u _i x. x ) ) x. _i ) ) = ( ( ( exp ` ( _i x. x ) ) x. _i ) - ( ( exp ` ( -u _i x. x ) ) x. _i ) ) ) |
| 108 | mulneg2 | |- ( ( ( exp ` ( -u _i x. x ) ) e. CC /\ _i e. CC ) -> ( ( exp ` ( -u _i x. x ) ) x. -u _i ) = -u ( ( exp ` ( -u _i x. x ) ) x. _i ) ) |
|
| 109 | 16 3 108 | sylancl | |- ( ( T. /\ x e. CC ) -> ( ( exp ` ( -u _i x. x ) ) x. -u _i ) = -u ( ( exp ` ( -u _i x. x ) ) x. _i ) ) |
| 110 | 109 | oveq2d | |- ( ( T. /\ x e. CC ) -> ( ( ( exp ` ( _i x. x ) ) x. _i ) + ( ( exp ` ( -u _i x. x ) ) x. -u _i ) ) = ( ( ( exp ` ( _i x. x ) ) x. _i ) + -u ( ( exp ` ( -u _i x. x ) ) x. _i ) ) ) |
| 111 | 8 16 4 | subdird | |- ( ( T. /\ x e. CC ) -> ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) x. _i ) = ( ( ( exp ` ( _i x. x ) ) x. _i ) - ( ( exp ` ( -u _i x. x ) ) x. _i ) ) ) |
| 112 | 107 110 111 | 3eqtr4d | |- ( ( T. /\ x e. CC ) -> ( ( ( exp ` ( _i x. x ) ) x. _i ) + ( ( exp ` ( -u _i x. x ) ) x. -u _i ) ) = ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) x. _i ) ) |
| 113 | 71 4 10 | divrecd | |- ( ( T. /\ x e. CC ) -> ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) / _i ) = ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) x. ( 1 / _i ) ) ) |
| 114 | irec | |- ( 1 / _i ) = -u _i |
|
| 115 | 114 | oveq2i | |- ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) x. ( 1 / _i ) ) = ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) x. -u _i ) |
| 116 | 113 115 | eqtrdi | |- ( ( T. /\ x e. CC ) -> ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) / _i ) = ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) x. -u _i ) ) |
| 117 | 116 | negeqd | |- ( ( T. /\ x e. CC ) -> -u ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) / _i ) = -u ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) x. -u _i ) ) |
| 118 | 104 112 117 | 3eqtr4d | |- ( ( T. /\ x e. CC ) -> ( ( ( exp ` ( _i x. x ) ) x. _i ) + ( ( exp ` ( -u _i x. x ) ) x. -u _i ) ) = -u ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) / _i ) ) |
| 119 | 118 | oveq1d | |- ( ( T. /\ x e. CC ) -> ( ( ( ( exp ` ( _i x. x ) ) x. _i ) + ( ( exp ` ( -u _i x. x ) ) x. -u _i ) ) / 2 ) = ( -u ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) / _i ) / 2 ) ) |
| 120 | 95 99 119 | 3eqtr4d | |- ( ( T. /\ x e. CC ) -> -u ( sin ` x ) = ( ( ( ( exp ` ( _i x. x ) ) x. _i ) + ( ( exp ` ( -u _i x. x ) ) x. -u _i ) ) / 2 ) ) |
| 121 | 120 | mpteq2dva | |- ( T. -> ( x e. CC |-> -u ( sin ` x ) ) = ( x e. CC |-> ( ( ( ( exp ` ( _i x. x ) ) x. _i ) + ( ( exp ` ( -u _i x. x ) ) x. -u _i ) ) / 2 ) ) ) |
| 122 | 92 93 121 | 3eqtr4d | |- ( T. -> ( CC _D cos ) = ( x e. CC |-> -u ( sin ` x ) ) ) |
| 123 | 89 122 | jca | |- ( T. -> ( ( CC _D sin ) = cos /\ ( CC _D cos ) = ( x e. CC |-> -u ( sin ` x ) ) ) ) |
| 124 | 123 | mptru | |- ( ( CC _D sin ) = cos /\ ( CC _D cos ) = ( x e. CC |-> -u ( sin ` x ) ) ) |