This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The direct product is smaller than any subgroup which contains the factors. (Contributed by Mario Carneiro, 25-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dprdlub.1 | |- ( ph -> G dom DProd S ) |
|
| dprdlub.2 | |- ( ph -> dom S = I ) |
||
| dprdlub.3 | |- ( ph -> T e. ( SubGrp ` G ) ) |
||
| dprdlub.4 | |- ( ( ph /\ k e. I ) -> ( S ` k ) C_ T ) |
||
| Assertion | dprdlub | |- ( ph -> ( G DProd S ) C_ T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdlub.1 | |- ( ph -> G dom DProd S ) |
|
| 2 | dprdlub.2 | |- ( ph -> dom S = I ) |
|
| 3 | dprdlub.3 | |- ( ph -> T e. ( SubGrp ` G ) ) |
|
| 4 | dprdlub.4 | |- ( ( ph /\ k e. I ) -> ( S ` k ) C_ T ) |
|
| 5 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 6 | eqid | |- { h e. X_ i e. I ( S ` i ) | h finSupp ( 0g ` G ) } = { h e. X_ i e. I ( S ` i ) | h finSupp ( 0g ` G ) } |
|
| 7 | 5 6 | dprdval | |- ( ( G dom DProd S /\ dom S = I ) -> ( G DProd S ) = ran ( f e. { h e. X_ i e. I ( S ` i ) | h finSupp ( 0g ` G ) } |-> ( G gsum f ) ) ) |
| 8 | 1 2 7 | syl2anc | |- ( ph -> ( G DProd S ) = ran ( f e. { h e. X_ i e. I ( S ` i ) | h finSupp ( 0g ` G ) } |-> ( G gsum f ) ) ) |
| 9 | eqid | |- ( Cntz ` G ) = ( Cntz ` G ) |
|
| 10 | 1 | adantr | |- ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp ( 0g ` G ) } ) -> G dom DProd S ) |
| 11 | dprdgrp | |- ( G dom DProd S -> G e. Grp ) |
|
| 12 | grpmnd | |- ( G e. Grp -> G e. Mnd ) |
|
| 13 | 10 11 12 | 3syl | |- ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp ( 0g ` G ) } ) -> G e. Mnd ) |
| 14 | 1 2 | dprddomcld | |- ( ph -> I e. _V ) |
| 15 | 14 | adantr | |- ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp ( 0g ` G ) } ) -> I e. _V ) |
| 16 | 3 | adantr | |- ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp ( 0g ` G ) } ) -> T e. ( SubGrp ` G ) ) |
| 17 | subgsubm | |- ( T e. ( SubGrp ` G ) -> T e. ( SubMnd ` G ) ) |
|
| 18 | 16 17 | syl | |- ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp ( 0g ` G ) } ) -> T e. ( SubMnd ` G ) ) |
| 19 | 2 | adantr | |- ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp ( 0g ` G ) } ) -> dom S = I ) |
| 20 | simpr | |- ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp ( 0g ` G ) } ) -> f e. { h e. X_ i e. I ( S ` i ) | h finSupp ( 0g ` G ) } ) |
|
| 21 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 22 | 6 10 19 20 21 | dprdff | |- ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp ( 0g ` G ) } ) -> f : I --> ( Base ` G ) ) |
| 23 | 22 | ffnd | |- ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp ( 0g ` G ) } ) -> f Fn I ) |
| 24 | 4 | adantlr | |- ( ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp ( 0g ` G ) } ) /\ k e. I ) -> ( S ` k ) C_ T ) |
| 25 | 6 10 19 20 | dprdfcl | |- ( ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp ( 0g ` G ) } ) /\ k e. I ) -> ( f ` k ) e. ( S ` k ) ) |
| 26 | 24 25 | sseldd | |- ( ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp ( 0g ` G ) } ) /\ k e. I ) -> ( f ` k ) e. T ) |
| 27 | 26 | ralrimiva | |- ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp ( 0g ` G ) } ) -> A. k e. I ( f ` k ) e. T ) |
| 28 | ffnfv | |- ( f : I --> T <-> ( f Fn I /\ A. k e. I ( f ` k ) e. T ) ) |
|
| 29 | 23 27 28 | sylanbrc | |- ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp ( 0g ` G ) } ) -> f : I --> T ) |
| 30 | 6 10 19 20 9 | dprdfcntz | |- ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp ( 0g ` G ) } ) -> ran f C_ ( ( Cntz ` G ) ` ran f ) ) |
| 31 | 6 10 19 20 | dprdffsupp | |- ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp ( 0g ` G ) } ) -> f finSupp ( 0g ` G ) ) |
| 32 | 5 9 13 15 18 29 30 31 | gsumzsubmcl | |- ( ( ph /\ f e. { h e. X_ i e. I ( S ` i ) | h finSupp ( 0g ` G ) } ) -> ( G gsum f ) e. T ) |
| 33 | 32 | fmpttd | |- ( ph -> ( f e. { h e. X_ i e. I ( S ` i ) | h finSupp ( 0g ` G ) } |-> ( G gsum f ) ) : { h e. X_ i e. I ( S ` i ) | h finSupp ( 0g ` G ) } --> T ) |
| 34 | 33 | frnd | |- ( ph -> ran ( f e. { h e. X_ i e. I ( S ` i ) | h finSupp ( 0g ` G ) } |-> ( G gsum f ) ) C_ T ) |
| 35 | 8 34 | eqsstrd | |- ( ph -> ( G DProd S ) C_ T ) |