This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternative definition of the order of a group element is as the cardinality of the cyclic subgroup generated by the element. (Contributed by Mario Carneiro, 14-Jan-2015) (Revised by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odf1.1 | |- X = ( Base ` G ) |
|
| odf1.2 | |- O = ( od ` G ) |
||
| odf1.3 | |- .x. = ( .g ` G ) |
||
| odf1.4 | |- F = ( x e. ZZ |-> ( x .x. A ) ) |
||
| Assertion | dfod2 | |- ( ( G e. Grp /\ A e. X ) -> ( O ` A ) = if ( ran F e. Fin , ( # ` ran F ) , 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odf1.1 | |- X = ( Base ` G ) |
|
| 2 | odf1.2 | |- O = ( od ` G ) |
|
| 3 | odf1.3 | |- .x. = ( .g ` G ) |
|
| 4 | odf1.4 | |- F = ( x e. ZZ |-> ( x .x. A ) ) |
|
| 5 | fzfid | |- ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) e. NN ) -> ( 0 ... ( ( O ` A ) - 1 ) ) e. Fin ) |
|
| 6 | 1 3 | mulgcl | |- ( ( G e. Grp /\ x e. ZZ /\ A e. X ) -> ( x .x. A ) e. X ) |
| 7 | 6 | 3expa | |- ( ( ( G e. Grp /\ x e. ZZ ) /\ A e. X ) -> ( x .x. A ) e. X ) |
| 8 | 7 | an32s | |- ( ( ( G e. Grp /\ A e. X ) /\ x e. ZZ ) -> ( x .x. A ) e. X ) |
| 9 | 8 | adantlr | |- ( ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) e. NN ) /\ x e. ZZ ) -> ( x .x. A ) e. X ) |
| 10 | 9 4 | fmptd | |- ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) e. NN ) -> F : ZZ --> X ) |
| 11 | frn | |- ( F : ZZ --> X -> ran F C_ X ) |
|
| 12 | 1 | fvexi | |- X e. _V |
| 13 | 12 | ssex | |- ( ran F C_ X -> ran F e. _V ) |
| 14 | 10 11 13 | 3syl | |- ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) e. NN ) -> ran F e. _V ) |
| 15 | elfzelz | |- ( y e. ( 0 ... ( ( O ` A ) - 1 ) ) -> y e. ZZ ) |
|
| 16 | 15 | adantl | |- ( ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) e. NN ) /\ y e. ( 0 ... ( ( O ` A ) - 1 ) ) ) -> y e. ZZ ) |
| 17 | ovex | |- ( y .x. A ) e. _V |
|
| 18 | oveq1 | |- ( x = y -> ( x .x. A ) = ( y .x. A ) ) |
|
| 19 | 4 18 | elrnmpt1s | |- ( ( y e. ZZ /\ ( y .x. A ) e. _V ) -> ( y .x. A ) e. ran F ) |
| 20 | 16 17 19 | sylancl | |- ( ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) e. NN ) /\ y e. ( 0 ... ( ( O ` A ) - 1 ) ) ) -> ( y .x. A ) e. ran F ) |
| 21 | 20 | ralrimiva | |- ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) e. NN ) -> A. y e. ( 0 ... ( ( O ` A ) - 1 ) ) ( y .x. A ) e. ran F ) |
| 22 | zmodfz | |- ( ( x e. ZZ /\ ( O ` A ) e. NN ) -> ( x mod ( O ` A ) ) e. ( 0 ... ( ( O ` A ) - 1 ) ) ) |
|
| 23 | 22 | ancoms | |- ( ( ( O ` A ) e. NN /\ x e. ZZ ) -> ( x mod ( O ` A ) ) e. ( 0 ... ( ( O ` A ) - 1 ) ) ) |
| 24 | 23 | adantll | |- ( ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) e. NN ) /\ x e. ZZ ) -> ( x mod ( O ` A ) ) e. ( 0 ... ( ( O ` A ) - 1 ) ) ) |
| 25 | simpllr | |- ( ( ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) e. NN ) /\ x e. ZZ ) /\ y e. ( 0 ... ( ( O ` A ) - 1 ) ) ) -> ( O ` A ) e. NN ) |
|
| 26 | simplr | |- ( ( ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) e. NN ) /\ x e. ZZ ) /\ y e. ( 0 ... ( ( O ` A ) - 1 ) ) ) -> x e. ZZ ) |
|
| 27 | 15 | adantl | |- ( ( ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) e. NN ) /\ x e. ZZ ) /\ y e. ( 0 ... ( ( O ` A ) - 1 ) ) ) -> y e. ZZ ) |
| 28 | moddvds | |- ( ( ( O ` A ) e. NN /\ x e. ZZ /\ y e. ZZ ) -> ( ( x mod ( O ` A ) ) = ( y mod ( O ` A ) ) <-> ( O ` A ) || ( x - y ) ) ) |
|
| 29 | 25 26 27 28 | syl3anc | |- ( ( ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) e. NN ) /\ x e. ZZ ) /\ y e. ( 0 ... ( ( O ` A ) - 1 ) ) ) -> ( ( x mod ( O ` A ) ) = ( y mod ( O ` A ) ) <-> ( O ` A ) || ( x - y ) ) ) |
| 30 | 27 | zred | |- ( ( ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) e. NN ) /\ x e. ZZ ) /\ y e. ( 0 ... ( ( O ` A ) - 1 ) ) ) -> y e. RR ) |
| 31 | 25 | nnrpd | |- ( ( ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) e. NN ) /\ x e. ZZ ) /\ y e. ( 0 ... ( ( O ` A ) - 1 ) ) ) -> ( O ` A ) e. RR+ ) |
| 32 | 0z | |- 0 e. ZZ |
|
| 33 | nnz | |- ( ( O ` A ) e. NN -> ( O ` A ) e. ZZ ) |
|
| 34 | 33 | adantl | |- ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) e. NN ) -> ( O ` A ) e. ZZ ) |
| 35 | 34 | adantr | |- ( ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) e. NN ) /\ x e. ZZ ) -> ( O ` A ) e. ZZ ) |
| 36 | elfzm11 | |- ( ( 0 e. ZZ /\ ( O ` A ) e. ZZ ) -> ( y e. ( 0 ... ( ( O ` A ) - 1 ) ) <-> ( y e. ZZ /\ 0 <_ y /\ y < ( O ` A ) ) ) ) |
|
| 37 | 32 35 36 | sylancr | |- ( ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) e. NN ) /\ x e. ZZ ) -> ( y e. ( 0 ... ( ( O ` A ) - 1 ) ) <-> ( y e. ZZ /\ 0 <_ y /\ y < ( O ` A ) ) ) ) |
| 38 | 37 | biimpa | |- ( ( ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) e. NN ) /\ x e. ZZ ) /\ y e. ( 0 ... ( ( O ` A ) - 1 ) ) ) -> ( y e. ZZ /\ 0 <_ y /\ y < ( O ` A ) ) ) |
| 39 | 38 | simp2d | |- ( ( ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) e. NN ) /\ x e. ZZ ) /\ y e. ( 0 ... ( ( O ` A ) - 1 ) ) ) -> 0 <_ y ) |
| 40 | 38 | simp3d | |- ( ( ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) e. NN ) /\ x e. ZZ ) /\ y e. ( 0 ... ( ( O ` A ) - 1 ) ) ) -> y < ( O ` A ) ) |
| 41 | modid | |- ( ( ( y e. RR /\ ( O ` A ) e. RR+ ) /\ ( 0 <_ y /\ y < ( O ` A ) ) ) -> ( y mod ( O ` A ) ) = y ) |
|
| 42 | 30 31 39 40 41 | syl22anc | |- ( ( ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) e. NN ) /\ x e. ZZ ) /\ y e. ( 0 ... ( ( O ` A ) - 1 ) ) ) -> ( y mod ( O ` A ) ) = y ) |
| 43 | 42 | eqeq2d | |- ( ( ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) e. NN ) /\ x e. ZZ ) /\ y e. ( 0 ... ( ( O ` A ) - 1 ) ) ) -> ( ( x mod ( O ` A ) ) = ( y mod ( O ` A ) ) <-> ( x mod ( O ` A ) ) = y ) ) |
| 44 | eqcom | |- ( ( x mod ( O ` A ) ) = y <-> y = ( x mod ( O ` A ) ) ) |
|
| 45 | 43 44 | bitrdi | |- ( ( ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) e. NN ) /\ x e. ZZ ) /\ y e. ( 0 ... ( ( O ` A ) - 1 ) ) ) -> ( ( x mod ( O ` A ) ) = ( y mod ( O ` A ) ) <-> y = ( x mod ( O ` A ) ) ) ) |
| 46 | simp-4l | |- ( ( ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) e. NN ) /\ x e. ZZ ) /\ y e. ( 0 ... ( ( O ` A ) - 1 ) ) ) -> G e. Grp ) |
|
| 47 | simp-4r | |- ( ( ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) e. NN ) /\ x e. ZZ ) /\ y e. ( 0 ... ( ( O ` A ) - 1 ) ) ) -> A e. X ) |
|
| 48 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 49 | 1 2 3 48 | odcong | |- ( ( G e. Grp /\ A e. X /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( O ` A ) || ( x - y ) <-> ( x .x. A ) = ( y .x. A ) ) ) |
| 50 | 46 47 26 27 49 | syl112anc | |- ( ( ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) e. NN ) /\ x e. ZZ ) /\ y e. ( 0 ... ( ( O ` A ) - 1 ) ) ) -> ( ( O ` A ) || ( x - y ) <-> ( x .x. A ) = ( y .x. A ) ) ) |
| 51 | 29 45 50 | 3bitr3rd | |- ( ( ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) e. NN ) /\ x e. ZZ ) /\ y e. ( 0 ... ( ( O ` A ) - 1 ) ) ) -> ( ( x .x. A ) = ( y .x. A ) <-> y = ( x mod ( O ` A ) ) ) ) |
| 52 | 51 | ralrimiva | |- ( ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) e. NN ) /\ x e. ZZ ) -> A. y e. ( 0 ... ( ( O ` A ) - 1 ) ) ( ( x .x. A ) = ( y .x. A ) <-> y = ( x mod ( O ` A ) ) ) ) |
| 53 | reu6i | |- ( ( ( x mod ( O ` A ) ) e. ( 0 ... ( ( O ` A ) - 1 ) ) /\ A. y e. ( 0 ... ( ( O ` A ) - 1 ) ) ( ( x .x. A ) = ( y .x. A ) <-> y = ( x mod ( O ` A ) ) ) ) -> E! y e. ( 0 ... ( ( O ` A ) - 1 ) ) ( x .x. A ) = ( y .x. A ) ) |
|
| 54 | 24 52 53 | syl2anc | |- ( ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) e. NN ) /\ x e. ZZ ) -> E! y e. ( 0 ... ( ( O ` A ) - 1 ) ) ( x .x. A ) = ( y .x. A ) ) |
| 55 | 54 | ralrimiva | |- ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) e. NN ) -> A. x e. ZZ E! y e. ( 0 ... ( ( O ` A ) - 1 ) ) ( x .x. A ) = ( y .x. A ) ) |
| 56 | ovex | |- ( x .x. A ) e. _V |
|
| 57 | 56 | rgenw | |- A. x e. ZZ ( x .x. A ) e. _V |
| 58 | eqeq1 | |- ( z = ( x .x. A ) -> ( z = ( y .x. A ) <-> ( x .x. A ) = ( y .x. A ) ) ) |
|
| 59 | 58 | reubidv | |- ( z = ( x .x. A ) -> ( E! y e. ( 0 ... ( ( O ` A ) - 1 ) ) z = ( y .x. A ) <-> E! y e. ( 0 ... ( ( O ` A ) - 1 ) ) ( x .x. A ) = ( y .x. A ) ) ) |
| 60 | 4 59 | ralrnmptw | |- ( A. x e. ZZ ( x .x. A ) e. _V -> ( A. z e. ran F E! y e. ( 0 ... ( ( O ` A ) - 1 ) ) z = ( y .x. A ) <-> A. x e. ZZ E! y e. ( 0 ... ( ( O ` A ) - 1 ) ) ( x .x. A ) = ( y .x. A ) ) ) |
| 61 | 57 60 | ax-mp | |- ( A. z e. ran F E! y e. ( 0 ... ( ( O ` A ) - 1 ) ) z = ( y .x. A ) <-> A. x e. ZZ E! y e. ( 0 ... ( ( O ` A ) - 1 ) ) ( x .x. A ) = ( y .x. A ) ) |
| 62 | 55 61 | sylibr | |- ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) e. NN ) -> A. z e. ran F E! y e. ( 0 ... ( ( O ` A ) - 1 ) ) z = ( y .x. A ) ) |
| 63 | eqid | |- ( y e. ( 0 ... ( ( O ` A ) - 1 ) ) |-> ( y .x. A ) ) = ( y e. ( 0 ... ( ( O ` A ) - 1 ) ) |-> ( y .x. A ) ) |
|
| 64 | 63 | f1ompt | |- ( ( y e. ( 0 ... ( ( O ` A ) - 1 ) ) |-> ( y .x. A ) ) : ( 0 ... ( ( O ` A ) - 1 ) ) -1-1-onto-> ran F <-> ( A. y e. ( 0 ... ( ( O ` A ) - 1 ) ) ( y .x. A ) e. ran F /\ A. z e. ran F E! y e. ( 0 ... ( ( O ` A ) - 1 ) ) z = ( y .x. A ) ) ) |
| 65 | 21 62 64 | sylanbrc | |- ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) e. NN ) -> ( y e. ( 0 ... ( ( O ` A ) - 1 ) ) |-> ( y .x. A ) ) : ( 0 ... ( ( O ` A ) - 1 ) ) -1-1-onto-> ran F ) |
| 66 | f1oen2g | |- ( ( ( 0 ... ( ( O ` A ) - 1 ) ) e. Fin /\ ran F e. _V /\ ( y e. ( 0 ... ( ( O ` A ) - 1 ) ) |-> ( y .x. A ) ) : ( 0 ... ( ( O ` A ) - 1 ) ) -1-1-onto-> ran F ) -> ( 0 ... ( ( O ` A ) - 1 ) ) ~~ ran F ) |
|
| 67 | 5 14 65 66 | syl3anc | |- ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) e. NN ) -> ( 0 ... ( ( O ` A ) - 1 ) ) ~~ ran F ) |
| 68 | enfi | |- ( ( 0 ... ( ( O ` A ) - 1 ) ) ~~ ran F -> ( ( 0 ... ( ( O ` A ) - 1 ) ) e. Fin <-> ran F e. Fin ) ) |
|
| 69 | 67 68 | syl | |- ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) e. NN ) -> ( ( 0 ... ( ( O ` A ) - 1 ) ) e. Fin <-> ran F e. Fin ) ) |
| 70 | 5 69 | mpbid | |- ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) e. NN ) -> ran F e. Fin ) |
| 71 | 70 | iftrued | |- ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) e. NN ) -> if ( ran F e. Fin , ( # ` ran F ) , 0 ) = ( # ` ran F ) ) |
| 72 | fz01en | |- ( ( O ` A ) e. ZZ -> ( 0 ... ( ( O ` A ) - 1 ) ) ~~ ( 1 ... ( O ` A ) ) ) |
|
| 73 | ensym | |- ( ( 0 ... ( ( O ` A ) - 1 ) ) ~~ ( 1 ... ( O ` A ) ) -> ( 1 ... ( O ` A ) ) ~~ ( 0 ... ( ( O ` A ) - 1 ) ) ) |
|
| 74 | 34 72 73 | 3syl | |- ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) e. NN ) -> ( 1 ... ( O ` A ) ) ~~ ( 0 ... ( ( O ` A ) - 1 ) ) ) |
| 75 | entr | |- ( ( ( 1 ... ( O ` A ) ) ~~ ( 0 ... ( ( O ` A ) - 1 ) ) /\ ( 0 ... ( ( O ` A ) - 1 ) ) ~~ ran F ) -> ( 1 ... ( O ` A ) ) ~~ ran F ) |
|
| 76 | 74 67 75 | syl2anc | |- ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) e. NN ) -> ( 1 ... ( O ` A ) ) ~~ ran F ) |
| 77 | fzfid | |- ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) e. NN ) -> ( 1 ... ( O ` A ) ) e. Fin ) |
|
| 78 | hashen | |- ( ( ( 1 ... ( O ` A ) ) e. Fin /\ ran F e. Fin ) -> ( ( # ` ( 1 ... ( O ` A ) ) ) = ( # ` ran F ) <-> ( 1 ... ( O ` A ) ) ~~ ran F ) ) |
|
| 79 | 77 70 78 | syl2anc | |- ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) e. NN ) -> ( ( # ` ( 1 ... ( O ` A ) ) ) = ( # ` ran F ) <-> ( 1 ... ( O ` A ) ) ~~ ran F ) ) |
| 80 | 76 79 | mpbird | |- ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) e. NN ) -> ( # ` ( 1 ... ( O ` A ) ) ) = ( # ` ran F ) ) |
| 81 | nnnn0 | |- ( ( O ` A ) e. NN -> ( O ` A ) e. NN0 ) |
|
| 82 | 81 | adantl | |- ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) e. NN ) -> ( O ` A ) e. NN0 ) |
| 83 | hashfz1 | |- ( ( O ` A ) e. NN0 -> ( # ` ( 1 ... ( O ` A ) ) ) = ( O ` A ) ) |
|
| 84 | 82 83 | syl | |- ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) e. NN ) -> ( # ` ( 1 ... ( O ` A ) ) ) = ( O ` A ) ) |
| 85 | 71 80 84 | 3eqtr2rd | |- ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) e. NN ) -> ( O ` A ) = if ( ran F e. Fin , ( # ` ran F ) , 0 ) ) |
| 86 | simp3 | |- ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> ( O ` A ) = 0 ) |
|
| 87 | 1 2 3 4 | odinf | |- ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> -. ran F e. Fin ) |
| 88 | 87 | iffalsed | |- ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> if ( ran F e. Fin , ( # ` ran F ) , 0 ) = 0 ) |
| 89 | 86 88 | eqtr4d | |- ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> ( O ` A ) = if ( ran F e. Fin , ( # ` ran F ) , 0 ) ) |
| 90 | 89 | 3expa | |- ( ( ( G e. Grp /\ A e. X ) /\ ( O ` A ) = 0 ) -> ( O ` A ) = if ( ran F e. Fin , ( # ` ran F ) , 0 ) ) |
| 91 | 1 2 | odcl | |- ( A e. X -> ( O ` A ) e. NN0 ) |
| 92 | 91 | adantl | |- ( ( G e. Grp /\ A e. X ) -> ( O ` A ) e. NN0 ) |
| 93 | elnn0 | |- ( ( O ` A ) e. NN0 <-> ( ( O ` A ) e. NN \/ ( O ` A ) = 0 ) ) |
|
| 94 | 92 93 | sylib | |- ( ( G e. Grp /\ A e. X ) -> ( ( O ` A ) e. NN \/ ( O ` A ) = 0 ) ) |
| 95 | 85 90 94 | mpjaodan | |- ( ( G e. Grp /\ A e. X ) -> ( O ` A ) = if ( ran F e. Fin , ( # ` ran F ) , 0 ) ) |