This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two multipliers are congruent relative to the base point's order, the corresponding multiples are the same. (Contributed by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odcl.1 | |- X = ( Base ` G ) |
|
| odcl.2 | |- O = ( od ` G ) |
||
| odid.3 | |- .x. = ( .g ` G ) |
||
| odid.4 | |- .0. = ( 0g ` G ) |
||
| Assertion | odcong | |- ( ( G e. Grp /\ A e. X /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( O ` A ) || ( M - N ) <-> ( M .x. A ) = ( N .x. A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odcl.1 | |- X = ( Base ` G ) |
|
| 2 | odcl.2 | |- O = ( od ` G ) |
|
| 3 | odid.3 | |- .x. = ( .g ` G ) |
|
| 4 | odid.4 | |- .0. = ( 0g ` G ) |
|
| 5 | zsubcl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M - N ) e. ZZ ) |
|
| 6 | 1 2 3 4 | oddvds | |- ( ( G e. Grp /\ A e. X /\ ( M - N ) e. ZZ ) -> ( ( O ` A ) || ( M - N ) <-> ( ( M - N ) .x. A ) = .0. ) ) |
| 7 | 5 6 | syl3an3 | |- ( ( G e. Grp /\ A e. X /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( O ` A ) || ( M - N ) <-> ( ( M - N ) .x. A ) = .0. ) ) |
| 8 | simp1 | |- ( ( G e. Grp /\ A e. X /\ ( M e. ZZ /\ N e. ZZ ) ) -> G e. Grp ) |
|
| 9 | simp3l | |- ( ( G e. Grp /\ A e. X /\ ( M e. ZZ /\ N e. ZZ ) ) -> M e. ZZ ) |
|
| 10 | simp3r | |- ( ( G e. Grp /\ A e. X /\ ( M e. ZZ /\ N e. ZZ ) ) -> N e. ZZ ) |
|
| 11 | simp2 | |- ( ( G e. Grp /\ A e. X /\ ( M e. ZZ /\ N e. ZZ ) ) -> A e. X ) |
|
| 12 | eqid | |- ( -g ` G ) = ( -g ` G ) |
|
| 13 | 1 3 12 | mulgsubdir | |- ( ( G e. Grp /\ ( M e. ZZ /\ N e. ZZ /\ A e. X ) ) -> ( ( M - N ) .x. A ) = ( ( M .x. A ) ( -g ` G ) ( N .x. A ) ) ) |
| 14 | 8 9 10 11 13 | syl13anc | |- ( ( G e. Grp /\ A e. X /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( M - N ) .x. A ) = ( ( M .x. A ) ( -g ` G ) ( N .x. A ) ) ) |
| 15 | 14 | eqeq1d | |- ( ( G e. Grp /\ A e. X /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( ( M - N ) .x. A ) = .0. <-> ( ( M .x. A ) ( -g ` G ) ( N .x. A ) ) = .0. ) ) |
| 16 | 1 3 | mulgcl | |- ( ( G e. Grp /\ M e. ZZ /\ A e. X ) -> ( M .x. A ) e. X ) |
| 17 | 8 9 11 16 | syl3anc | |- ( ( G e. Grp /\ A e. X /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( M .x. A ) e. X ) |
| 18 | 1 3 | mulgcl | |- ( ( G e. Grp /\ N e. ZZ /\ A e. X ) -> ( N .x. A ) e. X ) |
| 19 | 8 10 11 18 | syl3anc | |- ( ( G e. Grp /\ A e. X /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( N .x. A ) e. X ) |
| 20 | 1 4 12 | grpsubeq0 | |- ( ( G e. Grp /\ ( M .x. A ) e. X /\ ( N .x. A ) e. X ) -> ( ( ( M .x. A ) ( -g ` G ) ( N .x. A ) ) = .0. <-> ( M .x. A ) = ( N .x. A ) ) ) |
| 21 | 8 17 19 20 | syl3anc | |- ( ( G e. Grp /\ A e. X /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( ( M .x. A ) ( -g ` G ) ( N .x. A ) ) = .0. <-> ( M .x. A ) = ( N .x. A ) ) ) |
| 22 | 7 15 21 | 3bitrd | |- ( ( G e. Grp /\ A e. X /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( O ` A ) || ( M - N ) <-> ( M .x. A ) = ( N .x. A ) ) ) |