This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain and range of a one-to-one, onto function are equinumerous. This variation of f1oeng does not require the Axiom of Replacement. (Contributed by Mario Carneiro, 10-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1oen2g | |- ( ( A e. V /\ B e. W /\ F : A -1-1-onto-> B ) -> A ~~ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1of | |- ( F : A -1-1-onto-> B -> F : A --> B ) |
|
| 2 | fex2 | |- ( ( F : A --> B /\ A e. V /\ B e. W ) -> F e. _V ) |
|
| 3 | 1 2 | syl3an1 | |- ( ( F : A -1-1-onto-> B /\ A e. V /\ B e. W ) -> F e. _V ) |
| 4 | 3 | 3coml | |- ( ( A e. V /\ B e. W /\ F : A -1-1-onto-> B ) -> F e. _V ) |
| 5 | simp3 | |- ( ( A e. V /\ B e. W /\ F : A -1-1-onto-> B ) -> F : A -1-1-onto-> B ) |
|
| 6 | f1oen3g | |- ( ( F e. _V /\ F : A -1-1-onto-> B ) -> A ~~ B ) |
|
| 7 | 4 5 6 | syl2anc | |- ( ( A e. V /\ B e. W /\ F : A -1-1-onto-> B ) -> A ~~ B ) |