This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The multiples of an element with infinite order form an infinite cyclic subgroup of G . (Contributed by Mario Carneiro, 14-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odf1.1 | |- X = ( Base ` G ) |
|
| odf1.2 | |- O = ( od ` G ) |
||
| odf1.3 | |- .x. = ( .g ` G ) |
||
| odf1.4 | |- F = ( x e. ZZ |-> ( x .x. A ) ) |
||
| Assertion | odinf | |- ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> -. ran F e. Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odf1.1 | |- X = ( Base ` G ) |
|
| 2 | odf1.2 | |- O = ( od ` G ) |
|
| 3 | odf1.3 | |- .x. = ( .g ` G ) |
|
| 4 | odf1.4 | |- F = ( x e. ZZ |-> ( x .x. A ) ) |
|
| 5 | znnen | |- ZZ ~~ NN |
|
| 6 | nnenom | |- NN ~~ _om |
|
| 7 | 5 6 | entr2i | |- _om ~~ ZZ |
| 8 | 1 2 3 4 | odf1 | |- ( ( G e. Grp /\ A e. X ) -> ( ( O ` A ) = 0 <-> F : ZZ -1-1-> X ) ) |
| 9 | 8 | biimp3a | |- ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> F : ZZ -1-1-> X ) |
| 10 | f1f | |- ( F : ZZ -1-1-> X -> F : ZZ --> X ) |
|
| 11 | zex | |- ZZ e. _V |
|
| 12 | 1 | fvexi | |- X e. _V |
| 13 | fex2 | |- ( ( F : ZZ --> X /\ ZZ e. _V /\ X e. _V ) -> F e. _V ) |
|
| 14 | 11 12 13 | mp3an23 | |- ( F : ZZ --> X -> F e. _V ) |
| 15 | 9 10 14 | 3syl | |- ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> F e. _V ) |
| 16 | f1f1orn | |- ( F : ZZ -1-1-> X -> F : ZZ -1-1-onto-> ran F ) |
|
| 17 | 9 16 | syl | |- ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> F : ZZ -1-1-onto-> ran F ) |
| 18 | f1oen3g | |- ( ( F e. _V /\ F : ZZ -1-1-onto-> ran F ) -> ZZ ~~ ran F ) |
|
| 19 | 15 17 18 | syl2anc | |- ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> ZZ ~~ ran F ) |
| 20 | entr | |- ( ( _om ~~ ZZ /\ ZZ ~~ ran F ) -> _om ~~ ran F ) |
|
| 21 | 7 19 20 | sylancr | |- ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> _om ~~ ran F ) |
| 22 | endom | |- ( _om ~~ ran F -> _om ~<_ ran F ) |
|
| 23 | domnsym | |- ( _om ~<_ ran F -> -. ran F ~< _om ) |
|
| 24 | 21 22 23 | 3syl | |- ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> -. ran F ~< _om ) |
| 25 | isfinite | |- ( ran F e. Fin <-> ran F ~< _om ) |
|
| 26 | 24 25 | sylnibr | |- ( ( G e. Grp /\ A e. X /\ ( O ` A ) = 0 ) -> -. ran F e. Fin ) |