This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A restricted quantifier over an image set. Version of ralrnmpt with a disjoint variable condition, which does not require ax-13 . (Contributed by Mario Carneiro, 20-Aug-2015) Avoid ax-13 . (Revised by GG, 26-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ralrnmptw.1 | |- F = ( x e. A |-> B ) |
|
| ralrnmptw.2 | |- ( y = B -> ( ps <-> ch ) ) |
||
| Assertion | ralrnmptw | |- ( A. x e. A B e. V -> ( A. y e. ran F ps <-> A. x e. A ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrnmptw.1 | |- F = ( x e. A |-> B ) |
|
| 2 | ralrnmptw.2 | |- ( y = B -> ( ps <-> ch ) ) |
|
| 3 | 1 | fnmpt | |- ( A. x e. A B e. V -> F Fn A ) |
| 4 | dfsbcq | |- ( w = ( F ` z ) -> ( [. w / y ]. ps <-> [. ( F ` z ) / y ]. ps ) ) |
|
| 5 | 4 | ralrn | |- ( F Fn A -> ( A. w e. ran F [. w / y ]. ps <-> A. z e. A [. ( F ` z ) / y ]. ps ) ) |
| 6 | 3 5 | syl | |- ( A. x e. A B e. V -> ( A. w e. ran F [. w / y ]. ps <-> A. z e. A [. ( F ` z ) / y ]. ps ) ) |
| 7 | nfsbc1v | |- F/ y [. w / y ]. ps |
|
| 8 | nfv | |- F/ w ps |
|
| 9 | sbceq2a | |- ( w = y -> ( [. w / y ]. ps <-> ps ) ) |
|
| 10 | 7 8 9 | cbvralw | |- ( A. w e. ran F [. w / y ]. ps <-> A. y e. ran F ps ) |
| 11 | nfmpt1 | |- F/_ x ( x e. A |-> B ) |
|
| 12 | 1 11 | nfcxfr | |- F/_ x F |
| 13 | nfcv | |- F/_ x z |
|
| 14 | 12 13 | nffv | |- F/_ x ( F ` z ) |
| 15 | nfv | |- F/ x ps |
|
| 16 | 14 15 | nfsbcw | |- F/ x [. ( F ` z ) / y ]. ps |
| 17 | nfv | |- F/ z [. ( F ` x ) / y ]. ps |
|
| 18 | fveq2 | |- ( z = x -> ( F ` z ) = ( F ` x ) ) |
|
| 19 | 18 | sbceq1d | |- ( z = x -> ( [. ( F ` z ) / y ]. ps <-> [. ( F ` x ) / y ]. ps ) ) |
| 20 | 16 17 19 | cbvralw | |- ( A. z e. A [. ( F ` z ) / y ]. ps <-> A. x e. A [. ( F ` x ) / y ]. ps ) |
| 21 | 6 10 20 | 3bitr3g | |- ( A. x e. A B e. V -> ( A. y e. ran F ps <-> A. x e. A [. ( F ` x ) / y ]. ps ) ) |
| 22 | 1 | fvmpt2 | |- ( ( x e. A /\ B e. V ) -> ( F ` x ) = B ) |
| 23 | 22 | sbceq1d | |- ( ( x e. A /\ B e. V ) -> ( [. ( F ` x ) / y ]. ps <-> [. B / y ]. ps ) ) |
| 24 | 2 | sbcieg | |- ( B e. V -> ( [. B / y ]. ps <-> ch ) ) |
| 25 | 24 | adantl | |- ( ( x e. A /\ B e. V ) -> ( [. B / y ]. ps <-> ch ) ) |
| 26 | 23 25 | bitrd | |- ( ( x e. A /\ B e. V ) -> ( [. ( F ` x ) / y ]. ps <-> ch ) ) |
| 27 | 26 | ralimiaa | |- ( A. x e. A B e. V -> A. x e. A ( [. ( F ` x ) / y ]. ps <-> ch ) ) |
| 28 | ralbi | |- ( A. x e. A ( [. ( F ` x ) / y ]. ps <-> ch ) -> ( A. x e. A [. ( F ` x ) / y ]. ps <-> A. x e. A ch ) ) |
|
| 29 | 27 28 | syl | |- ( A. x e. A B e. V -> ( A. x e. A [. ( F ` x ) / y ]. ps <-> A. x e. A ch ) ) |
| 30 | 21 29 | bitrd | |- ( A. x e. A B e. V -> ( A. y e. ran F ps <-> A. x e. A ch ) ) |