This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of demoivre . It is longer but does not use the exponential function. This is Metamath 100 proof #17. (Contributed by Steve Rodriguez, 10-Nov-2006) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | demoivreALT | |- ( ( A e. CC /\ N e. NN0 ) -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ N ) = ( ( cos ` ( N x. A ) ) + ( _i x. ( sin ` ( N x. A ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( x = 0 -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ x ) = ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ 0 ) ) |
|
| 2 | oveq1 | |- ( x = 0 -> ( x x. A ) = ( 0 x. A ) ) |
|
| 3 | 2 | fveq2d | |- ( x = 0 -> ( cos ` ( x x. A ) ) = ( cos ` ( 0 x. A ) ) ) |
| 4 | 2 | fveq2d | |- ( x = 0 -> ( sin ` ( x x. A ) ) = ( sin ` ( 0 x. A ) ) ) |
| 5 | 4 | oveq2d | |- ( x = 0 -> ( _i x. ( sin ` ( x x. A ) ) ) = ( _i x. ( sin ` ( 0 x. A ) ) ) ) |
| 6 | 3 5 | oveq12d | |- ( x = 0 -> ( ( cos ` ( x x. A ) ) + ( _i x. ( sin ` ( x x. A ) ) ) ) = ( ( cos ` ( 0 x. A ) ) + ( _i x. ( sin ` ( 0 x. A ) ) ) ) ) |
| 7 | 1 6 | eqeq12d | |- ( x = 0 -> ( ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ x ) = ( ( cos ` ( x x. A ) ) + ( _i x. ( sin ` ( x x. A ) ) ) ) <-> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ 0 ) = ( ( cos ` ( 0 x. A ) ) + ( _i x. ( sin ` ( 0 x. A ) ) ) ) ) ) |
| 8 | 7 | imbi2d | |- ( x = 0 -> ( ( A e. CC -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ x ) = ( ( cos ` ( x x. A ) ) + ( _i x. ( sin ` ( x x. A ) ) ) ) ) <-> ( A e. CC -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ 0 ) = ( ( cos ` ( 0 x. A ) ) + ( _i x. ( sin ` ( 0 x. A ) ) ) ) ) ) ) |
| 9 | oveq2 | |- ( x = k -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ x ) = ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ k ) ) |
|
| 10 | oveq1 | |- ( x = k -> ( x x. A ) = ( k x. A ) ) |
|
| 11 | 10 | fveq2d | |- ( x = k -> ( cos ` ( x x. A ) ) = ( cos ` ( k x. A ) ) ) |
| 12 | 10 | fveq2d | |- ( x = k -> ( sin ` ( x x. A ) ) = ( sin ` ( k x. A ) ) ) |
| 13 | 12 | oveq2d | |- ( x = k -> ( _i x. ( sin ` ( x x. A ) ) ) = ( _i x. ( sin ` ( k x. A ) ) ) ) |
| 14 | 11 13 | oveq12d | |- ( x = k -> ( ( cos ` ( x x. A ) ) + ( _i x. ( sin ` ( x x. A ) ) ) ) = ( ( cos ` ( k x. A ) ) + ( _i x. ( sin ` ( k x. A ) ) ) ) ) |
| 15 | 9 14 | eqeq12d | |- ( x = k -> ( ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ x ) = ( ( cos ` ( x x. A ) ) + ( _i x. ( sin ` ( x x. A ) ) ) ) <-> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ k ) = ( ( cos ` ( k x. A ) ) + ( _i x. ( sin ` ( k x. A ) ) ) ) ) ) |
| 16 | 15 | imbi2d | |- ( x = k -> ( ( A e. CC -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ x ) = ( ( cos ` ( x x. A ) ) + ( _i x. ( sin ` ( x x. A ) ) ) ) ) <-> ( A e. CC -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ k ) = ( ( cos ` ( k x. A ) ) + ( _i x. ( sin ` ( k x. A ) ) ) ) ) ) ) |
| 17 | oveq2 | |- ( x = ( k + 1 ) -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ x ) = ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ ( k + 1 ) ) ) |
|
| 18 | oveq1 | |- ( x = ( k + 1 ) -> ( x x. A ) = ( ( k + 1 ) x. A ) ) |
|
| 19 | 18 | fveq2d | |- ( x = ( k + 1 ) -> ( cos ` ( x x. A ) ) = ( cos ` ( ( k + 1 ) x. A ) ) ) |
| 20 | 18 | fveq2d | |- ( x = ( k + 1 ) -> ( sin ` ( x x. A ) ) = ( sin ` ( ( k + 1 ) x. A ) ) ) |
| 21 | 20 | oveq2d | |- ( x = ( k + 1 ) -> ( _i x. ( sin ` ( x x. A ) ) ) = ( _i x. ( sin ` ( ( k + 1 ) x. A ) ) ) ) |
| 22 | 19 21 | oveq12d | |- ( x = ( k + 1 ) -> ( ( cos ` ( x x. A ) ) + ( _i x. ( sin ` ( x x. A ) ) ) ) = ( ( cos ` ( ( k + 1 ) x. A ) ) + ( _i x. ( sin ` ( ( k + 1 ) x. A ) ) ) ) ) |
| 23 | 17 22 | eqeq12d | |- ( x = ( k + 1 ) -> ( ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ x ) = ( ( cos ` ( x x. A ) ) + ( _i x. ( sin ` ( x x. A ) ) ) ) <-> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ ( k + 1 ) ) = ( ( cos ` ( ( k + 1 ) x. A ) ) + ( _i x. ( sin ` ( ( k + 1 ) x. A ) ) ) ) ) ) |
| 24 | 23 | imbi2d | |- ( x = ( k + 1 ) -> ( ( A e. CC -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ x ) = ( ( cos ` ( x x. A ) ) + ( _i x. ( sin ` ( x x. A ) ) ) ) ) <-> ( A e. CC -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ ( k + 1 ) ) = ( ( cos ` ( ( k + 1 ) x. A ) ) + ( _i x. ( sin ` ( ( k + 1 ) x. A ) ) ) ) ) ) ) |
| 25 | oveq2 | |- ( x = N -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ x ) = ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ N ) ) |
|
| 26 | oveq1 | |- ( x = N -> ( x x. A ) = ( N x. A ) ) |
|
| 27 | 26 | fveq2d | |- ( x = N -> ( cos ` ( x x. A ) ) = ( cos ` ( N x. A ) ) ) |
| 28 | 26 | fveq2d | |- ( x = N -> ( sin ` ( x x. A ) ) = ( sin ` ( N x. A ) ) ) |
| 29 | 28 | oveq2d | |- ( x = N -> ( _i x. ( sin ` ( x x. A ) ) ) = ( _i x. ( sin ` ( N x. A ) ) ) ) |
| 30 | 27 29 | oveq12d | |- ( x = N -> ( ( cos ` ( x x. A ) ) + ( _i x. ( sin ` ( x x. A ) ) ) ) = ( ( cos ` ( N x. A ) ) + ( _i x. ( sin ` ( N x. A ) ) ) ) ) |
| 31 | 25 30 | eqeq12d | |- ( x = N -> ( ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ x ) = ( ( cos ` ( x x. A ) ) + ( _i x. ( sin ` ( x x. A ) ) ) ) <-> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ N ) = ( ( cos ` ( N x. A ) ) + ( _i x. ( sin ` ( N x. A ) ) ) ) ) ) |
| 32 | 31 | imbi2d | |- ( x = N -> ( ( A e. CC -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ x ) = ( ( cos ` ( x x. A ) ) + ( _i x. ( sin ` ( x x. A ) ) ) ) ) <-> ( A e. CC -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ N ) = ( ( cos ` ( N x. A ) ) + ( _i x. ( sin ` ( N x. A ) ) ) ) ) ) ) |
| 33 | coscl | |- ( A e. CC -> ( cos ` A ) e. CC ) |
|
| 34 | ax-icn | |- _i e. CC |
|
| 35 | sincl | |- ( A e. CC -> ( sin ` A ) e. CC ) |
|
| 36 | mulcl | |- ( ( _i e. CC /\ ( sin ` A ) e. CC ) -> ( _i x. ( sin ` A ) ) e. CC ) |
|
| 37 | 34 35 36 | sylancr | |- ( A e. CC -> ( _i x. ( sin ` A ) ) e. CC ) |
| 38 | addcl | |- ( ( ( cos ` A ) e. CC /\ ( _i x. ( sin ` A ) ) e. CC ) -> ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) e. CC ) |
|
| 39 | 33 37 38 | syl2anc | |- ( A e. CC -> ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) e. CC ) |
| 40 | exp0 | |- ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) e. CC -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ 0 ) = 1 ) |
|
| 41 | 39 40 | syl | |- ( A e. CC -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ 0 ) = 1 ) |
| 42 | mul02 | |- ( A e. CC -> ( 0 x. A ) = 0 ) |
|
| 43 | 42 | fveq2d | |- ( A e. CC -> ( cos ` ( 0 x. A ) ) = ( cos ` 0 ) ) |
| 44 | cos0 | |- ( cos ` 0 ) = 1 |
|
| 45 | 43 44 | eqtrdi | |- ( A e. CC -> ( cos ` ( 0 x. A ) ) = 1 ) |
| 46 | 42 | fveq2d | |- ( A e. CC -> ( sin ` ( 0 x. A ) ) = ( sin ` 0 ) ) |
| 47 | sin0 | |- ( sin ` 0 ) = 0 |
|
| 48 | 46 47 | eqtrdi | |- ( A e. CC -> ( sin ` ( 0 x. A ) ) = 0 ) |
| 49 | 48 | oveq2d | |- ( A e. CC -> ( _i x. ( sin ` ( 0 x. A ) ) ) = ( _i x. 0 ) ) |
| 50 | 34 | mul01i | |- ( _i x. 0 ) = 0 |
| 51 | 49 50 | eqtrdi | |- ( A e. CC -> ( _i x. ( sin ` ( 0 x. A ) ) ) = 0 ) |
| 52 | 45 51 | oveq12d | |- ( A e. CC -> ( ( cos ` ( 0 x. A ) ) + ( _i x. ( sin ` ( 0 x. A ) ) ) ) = ( 1 + 0 ) ) |
| 53 | ax-1cn | |- 1 e. CC |
|
| 54 | 53 | addridi | |- ( 1 + 0 ) = 1 |
| 55 | 52 54 | eqtrdi | |- ( A e. CC -> ( ( cos ` ( 0 x. A ) ) + ( _i x. ( sin ` ( 0 x. A ) ) ) ) = 1 ) |
| 56 | 41 55 | eqtr4d | |- ( A e. CC -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ 0 ) = ( ( cos ` ( 0 x. A ) ) + ( _i x. ( sin ` ( 0 x. A ) ) ) ) ) |
| 57 | expp1 | |- ( ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) e. CC /\ k e. NN0 ) -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ ( k + 1 ) ) = ( ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ k ) x. ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) ) |
|
| 58 | 39 57 | sylan | |- ( ( A e. CC /\ k e. NN0 ) -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ ( k + 1 ) ) = ( ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ k ) x. ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) ) |
| 59 | 58 | ancoms | |- ( ( k e. NN0 /\ A e. CC ) -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ ( k + 1 ) ) = ( ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ k ) x. ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) ) |
| 60 | 59 | adantr | |- ( ( ( k e. NN0 /\ A e. CC ) /\ ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ k ) = ( ( cos ` ( k x. A ) ) + ( _i x. ( sin ` ( k x. A ) ) ) ) ) -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ ( k + 1 ) ) = ( ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ k ) x. ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) ) |
| 61 | oveq1 | |- ( ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ k ) = ( ( cos ` ( k x. A ) ) + ( _i x. ( sin ` ( k x. A ) ) ) ) -> ( ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ k ) x. ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) = ( ( ( cos ` ( k x. A ) ) + ( _i x. ( sin ` ( k x. A ) ) ) ) x. ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) ) |
|
| 62 | 61 | adantl | |- ( ( ( k e. NN0 /\ A e. CC ) /\ ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ k ) = ( ( cos ` ( k x. A ) ) + ( _i x. ( sin ` ( k x. A ) ) ) ) ) -> ( ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ k ) x. ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) = ( ( ( cos ` ( k x. A ) ) + ( _i x. ( sin ` ( k x. A ) ) ) ) x. ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) ) |
| 63 | nn0cn | |- ( k e. NN0 -> k e. CC ) |
|
| 64 | mulcl | |- ( ( k e. CC /\ A e. CC ) -> ( k x. A ) e. CC ) |
|
| 65 | 63 64 | sylan | |- ( ( k e. NN0 /\ A e. CC ) -> ( k x. A ) e. CC ) |
| 66 | sinadd | |- ( ( ( k x. A ) e. CC /\ A e. CC ) -> ( sin ` ( ( k x. A ) + A ) ) = ( ( ( sin ` ( k x. A ) ) x. ( cos ` A ) ) + ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) ) ) |
|
| 67 | 65 66 | sylancom | |- ( ( k e. NN0 /\ A e. CC ) -> ( sin ` ( ( k x. A ) + A ) ) = ( ( ( sin ` ( k x. A ) ) x. ( cos ` A ) ) + ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) ) ) |
| 68 | 33 | adantl | |- ( ( k e. NN0 /\ A e. CC ) -> ( cos ` A ) e. CC ) |
| 69 | sincl | |- ( ( k x. A ) e. CC -> ( sin ` ( k x. A ) ) e. CC ) |
|
| 70 | 65 69 | syl | |- ( ( k e. NN0 /\ A e. CC ) -> ( sin ` ( k x. A ) ) e. CC ) |
| 71 | mulcom | |- ( ( ( cos ` A ) e. CC /\ ( sin ` ( k x. A ) ) e. CC ) -> ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) = ( ( sin ` ( k x. A ) ) x. ( cos ` A ) ) ) |
|
| 72 | 68 70 71 | syl2anc | |- ( ( k e. NN0 /\ A e. CC ) -> ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) = ( ( sin ` ( k x. A ) ) x. ( cos ` A ) ) ) |
| 73 | 72 | oveq1d | |- ( ( k e. NN0 /\ A e. CC ) -> ( ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) + ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) ) = ( ( ( sin ` ( k x. A ) ) x. ( cos ` A ) ) + ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) ) ) |
| 74 | mulcl | |- ( ( ( cos ` A ) e. CC /\ ( sin ` ( k x. A ) ) e. CC ) -> ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) e. CC ) |
|
| 75 | 68 70 74 | syl2anc | |- ( ( k e. NN0 /\ A e. CC ) -> ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) e. CC ) |
| 76 | coscl | |- ( ( k x. A ) e. CC -> ( cos ` ( k x. A ) ) e. CC ) |
|
| 77 | 65 76 | syl | |- ( ( k e. NN0 /\ A e. CC ) -> ( cos ` ( k x. A ) ) e. CC ) |
| 78 | 35 | adantl | |- ( ( k e. NN0 /\ A e. CC ) -> ( sin ` A ) e. CC ) |
| 79 | mulcl | |- ( ( ( cos ` ( k x. A ) ) e. CC /\ ( sin ` A ) e. CC ) -> ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) e. CC ) |
|
| 80 | 77 78 79 | syl2anc | |- ( ( k e. NN0 /\ A e. CC ) -> ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) e. CC ) |
| 81 | addcom | |- ( ( ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) e. CC /\ ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) e. CC ) -> ( ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) + ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) ) = ( ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) + ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) |
|
| 82 | 75 80 81 | syl2anc | |- ( ( k e. NN0 /\ A e. CC ) -> ( ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) + ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) ) = ( ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) + ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) |
| 83 | 67 73 82 | 3eqtr2d | |- ( ( k e. NN0 /\ A e. CC ) -> ( sin ` ( ( k x. A ) + A ) ) = ( ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) + ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) |
| 84 | 83 | oveq2d | |- ( ( k e. NN0 /\ A e. CC ) -> ( _i x. ( sin ` ( ( k x. A ) + A ) ) ) = ( _i x. ( ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) + ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) ) |
| 85 | 84 | oveq2d | |- ( ( k e. NN0 /\ A e. CC ) -> ( ( cos ` ( ( k x. A ) + A ) ) + ( _i x. ( sin ` ( ( k x. A ) + A ) ) ) ) = ( ( cos ` ( ( k x. A ) + A ) ) + ( _i x. ( ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) + ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) ) ) |
| 86 | adddir | |- ( ( k e. CC /\ 1 e. CC /\ A e. CC ) -> ( ( k + 1 ) x. A ) = ( ( k x. A ) + ( 1 x. A ) ) ) |
|
| 87 | mullid | |- ( A e. CC -> ( 1 x. A ) = A ) |
|
| 88 | 87 | oveq2d | |- ( A e. CC -> ( ( k x. A ) + ( 1 x. A ) ) = ( ( k x. A ) + A ) ) |
| 89 | 88 | 3ad2ant3 | |- ( ( k e. CC /\ 1 e. CC /\ A e. CC ) -> ( ( k x. A ) + ( 1 x. A ) ) = ( ( k x. A ) + A ) ) |
| 90 | 86 89 | eqtrd | |- ( ( k e. CC /\ 1 e. CC /\ A e. CC ) -> ( ( k + 1 ) x. A ) = ( ( k x. A ) + A ) ) |
| 91 | 63 90 | syl3an1 | |- ( ( k e. NN0 /\ 1 e. CC /\ A e. CC ) -> ( ( k + 1 ) x. A ) = ( ( k x. A ) + A ) ) |
| 92 | 53 91 | mp3an2 | |- ( ( k e. NN0 /\ A e. CC ) -> ( ( k + 1 ) x. A ) = ( ( k x. A ) + A ) ) |
| 93 | 92 | fveq2d | |- ( ( k e. NN0 /\ A e. CC ) -> ( cos ` ( ( k + 1 ) x. A ) ) = ( cos ` ( ( k x. A ) + A ) ) ) |
| 94 | 92 | fveq2d | |- ( ( k e. NN0 /\ A e. CC ) -> ( sin ` ( ( k + 1 ) x. A ) ) = ( sin ` ( ( k x. A ) + A ) ) ) |
| 95 | 94 | oveq2d | |- ( ( k e. NN0 /\ A e. CC ) -> ( _i x. ( sin ` ( ( k + 1 ) x. A ) ) ) = ( _i x. ( sin ` ( ( k x. A ) + A ) ) ) ) |
| 96 | 93 95 | oveq12d | |- ( ( k e. NN0 /\ A e. CC ) -> ( ( cos ` ( ( k + 1 ) x. A ) ) + ( _i x. ( sin ` ( ( k + 1 ) x. A ) ) ) ) = ( ( cos ` ( ( k x. A ) + A ) ) + ( _i x. ( sin ` ( ( k x. A ) + A ) ) ) ) ) |
| 97 | mulcl | |- ( ( _i e. CC /\ ( sin ` ( k x. A ) ) e. CC ) -> ( _i x. ( sin ` ( k x. A ) ) ) e. CC ) |
|
| 98 | 34 97 | mpan | |- ( ( sin ` ( k x. A ) ) e. CC -> ( _i x. ( sin ` ( k x. A ) ) ) e. CC ) |
| 99 | 65 69 98 | 3syl | |- ( ( k e. NN0 /\ A e. CC ) -> ( _i x. ( sin ` ( k x. A ) ) ) e. CC ) |
| 100 | 33 37 | jca | |- ( A e. CC -> ( ( cos ` A ) e. CC /\ ( _i x. ( sin ` A ) ) e. CC ) ) |
| 101 | 100 | adantl | |- ( ( k e. NN0 /\ A e. CC ) -> ( ( cos ` A ) e. CC /\ ( _i x. ( sin ` A ) ) e. CC ) ) |
| 102 | muladd | |- ( ( ( ( cos ` ( k x. A ) ) e. CC /\ ( _i x. ( sin ` ( k x. A ) ) ) e. CC ) /\ ( ( cos ` A ) e. CC /\ ( _i x. ( sin ` A ) ) e. CC ) ) -> ( ( ( cos ` ( k x. A ) ) + ( _i x. ( sin ` ( k x. A ) ) ) ) x. ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) = ( ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) + ( ( _i x. ( sin ` A ) ) x. ( _i x. ( sin ` ( k x. A ) ) ) ) ) + ( ( ( cos ` ( k x. A ) ) x. ( _i x. ( sin ` A ) ) ) + ( ( cos ` A ) x. ( _i x. ( sin ` ( k x. A ) ) ) ) ) ) ) |
|
| 103 | 77 99 101 102 | syl21anc | |- ( ( k e. NN0 /\ A e. CC ) -> ( ( ( cos ` ( k x. A ) ) + ( _i x. ( sin ` ( k x. A ) ) ) ) x. ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) = ( ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) + ( ( _i x. ( sin ` A ) ) x. ( _i x. ( sin ` ( k x. A ) ) ) ) ) + ( ( ( cos ` ( k x. A ) ) x. ( _i x. ( sin ` A ) ) ) + ( ( cos ` A ) x. ( _i x. ( sin ` ( k x. A ) ) ) ) ) ) ) |
| 104 | 78 34 | jctil | |- ( ( k e. NN0 /\ A e. CC ) -> ( _i e. CC /\ ( sin ` A ) e. CC ) ) |
| 105 | 70 34 | jctil | |- ( ( k e. NN0 /\ A e. CC ) -> ( _i e. CC /\ ( sin ` ( k x. A ) ) e. CC ) ) |
| 106 | mul4 | |- ( ( ( _i e. CC /\ ( sin ` A ) e. CC ) /\ ( _i e. CC /\ ( sin ` ( k x. A ) ) e. CC ) ) -> ( ( _i x. ( sin ` A ) ) x. ( _i x. ( sin ` ( k x. A ) ) ) ) = ( ( _i x. _i ) x. ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) ) |
|
| 107 | ixi | |- ( _i x. _i ) = -u 1 |
|
| 108 | 107 | oveq1i | |- ( ( _i x. _i ) x. ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) = ( -u 1 x. ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) |
| 109 | 106 108 | eqtrdi | |- ( ( ( _i e. CC /\ ( sin ` A ) e. CC ) /\ ( _i e. CC /\ ( sin ` ( k x. A ) ) e. CC ) ) -> ( ( _i x. ( sin ` A ) ) x. ( _i x. ( sin ` ( k x. A ) ) ) ) = ( -u 1 x. ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) ) |
| 110 | 104 105 109 | syl2anc | |- ( ( k e. NN0 /\ A e. CC ) -> ( ( _i x. ( sin ` A ) ) x. ( _i x. ( sin ` ( k x. A ) ) ) ) = ( -u 1 x. ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) ) |
| 111 | 110 | oveq2d | |- ( ( k e. NN0 /\ A e. CC ) -> ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) + ( ( _i x. ( sin ` A ) ) x. ( _i x. ( sin ` ( k x. A ) ) ) ) ) = ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) + ( -u 1 x. ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) ) ) |
| 112 | 111 | oveq1d | |- ( ( k e. NN0 /\ A e. CC ) -> ( ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) + ( ( _i x. ( sin ` A ) ) x. ( _i x. ( sin ` ( k x. A ) ) ) ) ) + ( ( ( cos ` ( k x. A ) ) x. ( _i x. ( sin ` A ) ) ) + ( ( cos ` A ) x. ( _i x. ( sin ` ( k x. A ) ) ) ) ) ) = ( ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) + ( -u 1 x. ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) ) + ( ( ( cos ` ( k x. A ) ) x. ( _i x. ( sin ` A ) ) ) + ( ( cos ` A ) x. ( _i x. ( sin ` ( k x. A ) ) ) ) ) ) ) |
| 113 | mul12 | |- ( ( ( cos ` ( k x. A ) ) e. CC /\ _i e. CC /\ ( sin ` A ) e. CC ) -> ( ( cos ` ( k x. A ) ) x. ( _i x. ( sin ` A ) ) ) = ( _i x. ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) ) ) |
|
| 114 | 34 113 | mp3an2 | |- ( ( ( cos ` ( k x. A ) ) e. CC /\ ( sin ` A ) e. CC ) -> ( ( cos ` ( k x. A ) ) x. ( _i x. ( sin ` A ) ) ) = ( _i x. ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) ) ) |
| 115 | 77 78 114 | syl2anc | |- ( ( k e. NN0 /\ A e. CC ) -> ( ( cos ` ( k x. A ) ) x. ( _i x. ( sin ` A ) ) ) = ( _i x. ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) ) ) |
| 116 | mul12 | |- ( ( ( cos ` A ) e. CC /\ _i e. CC /\ ( sin ` ( k x. A ) ) e. CC ) -> ( ( cos ` A ) x. ( _i x. ( sin ` ( k x. A ) ) ) ) = ( _i x. ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) |
|
| 117 | 34 116 | mp3an2 | |- ( ( ( cos ` A ) e. CC /\ ( sin ` ( k x. A ) ) e. CC ) -> ( ( cos ` A ) x. ( _i x. ( sin ` ( k x. A ) ) ) ) = ( _i x. ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) |
| 118 | 68 70 117 | syl2anc | |- ( ( k e. NN0 /\ A e. CC ) -> ( ( cos ` A ) x. ( _i x. ( sin ` ( k x. A ) ) ) ) = ( _i x. ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) |
| 119 | 115 118 | oveq12d | |- ( ( k e. NN0 /\ A e. CC ) -> ( ( ( cos ` ( k x. A ) ) x. ( _i x. ( sin ` A ) ) ) + ( ( cos ` A ) x. ( _i x. ( sin ` ( k x. A ) ) ) ) ) = ( ( _i x. ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) ) + ( _i x. ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) ) |
| 120 | adddi | |- ( ( _i e. CC /\ ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) e. CC /\ ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) e. CC ) -> ( _i x. ( ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) + ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) = ( ( _i x. ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) ) + ( _i x. ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) ) |
|
| 121 | 34 120 | mp3an1 | |- ( ( ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) e. CC /\ ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) e. CC ) -> ( _i x. ( ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) + ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) = ( ( _i x. ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) ) + ( _i x. ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) ) |
| 122 | 80 75 121 | syl2anc | |- ( ( k e. NN0 /\ A e. CC ) -> ( _i x. ( ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) + ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) = ( ( _i x. ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) ) + ( _i x. ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) ) |
| 123 | 119 122 | eqtr4d | |- ( ( k e. NN0 /\ A e. CC ) -> ( ( ( cos ` ( k x. A ) ) x. ( _i x. ( sin ` A ) ) ) + ( ( cos ` A ) x. ( _i x. ( sin ` ( k x. A ) ) ) ) ) = ( _i x. ( ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) + ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) ) |
| 124 | 123 | oveq2d | |- ( ( k e. NN0 /\ A e. CC ) -> ( ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) + ( -u 1 x. ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) ) + ( ( ( cos ` ( k x. A ) ) x. ( _i x. ( sin ` A ) ) ) + ( ( cos ` A ) x. ( _i x. ( sin ` ( k x. A ) ) ) ) ) ) = ( ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) + ( -u 1 x. ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) ) + ( _i x. ( ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) + ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) ) ) |
| 125 | 103 112 124 | 3eqtrd | |- ( ( k e. NN0 /\ A e. CC ) -> ( ( ( cos ` ( k x. A ) ) + ( _i x. ( sin ` ( k x. A ) ) ) ) x. ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) = ( ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) + ( -u 1 x. ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) ) + ( _i x. ( ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) + ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) ) ) |
| 126 | mulcl | |- ( ( ( sin ` A ) e. CC /\ ( sin ` ( k x. A ) ) e. CC ) -> ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) e. CC ) |
|
| 127 | 78 70 126 | syl2anc | |- ( ( k e. NN0 /\ A e. CC ) -> ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) e. CC ) |
| 128 | mulm1 | |- ( ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) e. CC -> ( -u 1 x. ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) = -u ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) |
|
| 129 | 127 128 | syl | |- ( ( k e. NN0 /\ A e. CC ) -> ( -u 1 x. ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) = -u ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) |
| 130 | 129 | oveq2d | |- ( ( k e. NN0 /\ A e. CC ) -> ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) + ( -u 1 x. ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) ) = ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) + -u ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) ) |
| 131 | 130 | oveq1d | |- ( ( k e. NN0 /\ A e. CC ) -> ( ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) + ( -u 1 x. ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) ) + ( _i x. ( ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) + ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) ) = ( ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) + -u ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) + ( _i x. ( ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) + ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) ) ) |
| 132 | mulcl | |- ( ( ( cos ` ( k x. A ) ) e. CC /\ ( cos ` A ) e. CC ) -> ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) e. CC ) |
|
| 133 | 77 68 132 | syl2anc | |- ( ( k e. NN0 /\ A e. CC ) -> ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) e. CC ) |
| 134 | negsub | |- ( ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) e. CC /\ ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) e. CC ) -> ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) + -u ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) = ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) - ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) ) |
|
| 135 | 133 127 134 | syl2anc | |- ( ( k e. NN0 /\ A e. CC ) -> ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) + -u ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) = ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) - ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) ) |
| 136 | 135 | oveq1d | |- ( ( k e. NN0 /\ A e. CC ) -> ( ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) + -u ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) + ( _i x. ( ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) + ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) ) = ( ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) - ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) + ( _i x. ( ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) + ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) ) ) |
| 137 | 125 131 136 | 3eqtrd | |- ( ( k e. NN0 /\ A e. CC ) -> ( ( ( cos ` ( k x. A ) ) + ( _i x. ( sin ` ( k x. A ) ) ) ) x. ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) = ( ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) - ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) + ( _i x. ( ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) + ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) ) ) |
| 138 | cosadd | |- ( ( ( k x. A ) e. CC /\ A e. CC ) -> ( cos ` ( ( k x. A ) + A ) ) = ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) - ( ( sin ` ( k x. A ) ) x. ( sin ` A ) ) ) ) |
|
| 139 | 65 138 | sylancom | |- ( ( k e. NN0 /\ A e. CC ) -> ( cos ` ( ( k x. A ) + A ) ) = ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) - ( ( sin ` ( k x. A ) ) x. ( sin ` A ) ) ) ) |
| 140 | mulcom | |- ( ( ( sin ` ( k x. A ) ) e. CC /\ ( sin ` A ) e. CC ) -> ( ( sin ` ( k x. A ) ) x. ( sin ` A ) ) = ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) |
|
| 141 | 70 78 140 | syl2anc | |- ( ( k e. NN0 /\ A e. CC ) -> ( ( sin ` ( k x. A ) ) x. ( sin ` A ) ) = ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) |
| 142 | 141 | oveq2d | |- ( ( k e. NN0 /\ A e. CC ) -> ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) - ( ( sin ` ( k x. A ) ) x. ( sin ` A ) ) ) = ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) - ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) ) |
| 143 | 139 142 | eqtrd | |- ( ( k e. NN0 /\ A e. CC ) -> ( cos ` ( ( k x. A ) + A ) ) = ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) - ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) ) |
| 144 | 143 | oveq1d | |- ( ( k e. NN0 /\ A e. CC ) -> ( ( cos ` ( ( k x. A ) + A ) ) + ( _i x. ( ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) + ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) ) = ( ( ( ( cos ` ( k x. A ) ) x. ( cos ` A ) ) - ( ( sin ` A ) x. ( sin ` ( k x. A ) ) ) ) + ( _i x. ( ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) + ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) ) ) |
| 145 | 137 144 | eqtr4d | |- ( ( k e. NN0 /\ A e. CC ) -> ( ( ( cos ` ( k x. A ) ) + ( _i x. ( sin ` ( k x. A ) ) ) ) x. ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) = ( ( cos ` ( ( k x. A ) + A ) ) + ( _i x. ( ( ( cos ` ( k x. A ) ) x. ( sin ` A ) ) + ( ( cos ` A ) x. ( sin ` ( k x. A ) ) ) ) ) ) ) |
| 146 | 85 96 145 | 3eqtr4rd | |- ( ( k e. NN0 /\ A e. CC ) -> ( ( ( cos ` ( k x. A ) ) + ( _i x. ( sin ` ( k x. A ) ) ) ) x. ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) = ( ( cos ` ( ( k + 1 ) x. A ) ) + ( _i x. ( sin ` ( ( k + 1 ) x. A ) ) ) ) ) |
| 147 | 146 | adantr | |- ( ( ( k e. NN0 /\ A e. CC ) /\ ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ k ) = ( ( cos ` ( k x. A ) ) + ( _i x. ( sin ` ( k x. A ) ) ) ) ) -> ( ( ( cos ` ( k x. A ) ) + ( _i x. ( sin ` ( k x. A ) ) ) ) x. ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) = ( ( cos ` ( ( k + 1 ) x. A ) ) + ( _i x. ( sin ` ( ( k + 1 ) x. A ) ) ) ) ) |
| 148 | 60 62 147 | 3eqtrd | |- ( ( ( k e. NN0 /\ A e. CC ) /\ ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ k ) = ( ( cos ` ( k x. A ) ) + ( _i x. ( sin ` ( k x. A ) ) ) ) ) -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ ( k + 1 ) ) = ( ( cos ` ( ( k + 1 ) x. A ) ) + ( _i x. ( sin ` ( ( k + 1 ) x. A ) ) ) ) ) |
| 149 | 148 | exp31 | |- ( k e. NN0 -> ( A e. CC -> ( ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ k ) = ( ( cos ` ( k x. A ) ) + ( _i x. ( sin ` ( k x. A ) ) ) ) -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ ( k + 1 ) ) = ( ( cos ` ( ( k + 1 ) x. A ) ) + ( _i x. ( sin ` ( ( k + 1 ) x. A ) ) ) ) ) ) ) |
| 150 | 149 | a2d | |- ( k e. NN0 -> ( ( A e. CC -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ k ) = ( ( cos ` ( k x. A ) ) + ( _i x. ( sin ` ( k x. A ) ) ) ) ) -> ( A e. CC -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ ( k + 1 ) ) = ( ( cos ` ( ( k + 1 ) x. A ) ) + ( _i x. ( sin ` ( ( k + 1 ) x. A ) ) ) ) ) ) ) |
| 151 | 8 16 24 32 56 150 | nn0ind | |- ( N e. NN0 -> ( A e. CC -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ N ) = ( ( cos ` ( N x. A ) ) + ( _i x. ( sin ` ( N x. A ) ) ) ) ) ) |
| 152 | 151 | impcom | |- ( ( A e. CC /\ N e. NN0 ) -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ N ) = ( ( cos ` ( N x. A ) ) + ( _i x. ( sin ` ( N x. A ) ) ) ) ) |