This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rearrangement of 4 factors. (Contributed by NM, 8-Oct-1999)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mul4 | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A x. B ) x. ( C x. D ) ) = ( ( A x. C ) x. ( B x. D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul32 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A x. B ) x. C ) = ( ( A x. C ) x. B ) ) |
|
| 2 | 1 | oveq1d | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( A x. B ) x. C ) x. D ) = ( ( ( A x. C ) x. B ) x. D ) ) |
| 3 | 2 | 3expa | |- ( ( ( A e. CC /\ B e. CC ) /\ C e. CC ) -> ( ( ( A x. B ) x. C ) x. D ) = ( ( ( A x. C ) x. B ) x. D ) ) |
| 4 | 3 | adantrr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A x. B ) x. C ) x. D ) = ( ( ( A x. C ) x. B ) x. D ) ) |
| 5 | mulcl | |- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) e. CC ) |
|
| 6 | mulass | |- ( ( ( A x. B ) e. CC /\ C e. CC /\ D e. CC ) -> ( ( ( A x. B ) x. C ) x. D ) = ( ( A x. B ) x. ( C x. D ) ) ) |
|
| 7 | 6 | 3expb | |- ( ( ( A x. B ) e. CC /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A x. B ) x. C ) x. D ) = ( ( A x. B ) x. ( C x. D ) ) ) |
| 8 | 5 7 | sylan | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A x. B ) x. C ) x. D ) = ( ( A x. B ) x. ( C x. D ) ) ) |
| 9 | mulcl | |- ( ( A e. CC /\ C e. CC ) -> ( A x. C ) e. CC ) |
|
| 10 | mulass | |- ( ( ( A x. C ) e. CC /\ B e. CC /\ D e. CC ) -> ( ( ( A x. C ) x. B ) x. D ) = ( ( A x. C ) x. ( B x. D ) ) ) |
|
| 11 | 10 | 3expb | |- ( ( ( A x. C ) e. CC /\ ( B e. CC /\ D e. CC ) ) -> ( ( ( A x. C ) x. B ) x. D ) = ( ( A x. C ) x. ( B x. D ) ) ) |
| 12 | 9 11 | sylan | |- ( ( ( A e. CC /\ C e. CC ) /\ ( B e. CC /\ D e. CC ) ) -> ( ( ( A x. C ) x. B ) x. D ) = ( ( A x. C ) x. ( B x. D ) ) ) |
| 13 | 12 | an4s | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A x. C ) x. B ) x. D ) = ( ( A x. C ) x. ( B x. D ) ) ) |
| 14 | 4 8 13 | 3eqtr3d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A x. B ) x. ( C x. D ) ) = ( ( A x. C ) x. ( B x. D ) ) ) |