This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Product of two sums. (Contributed by NM, 14-Jan-2006) (Proof shortened by Andrew Salmon, 19-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | muladd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + B ) x. ( C + D ) ) = ( ( ( A x. C ) + ( D x. B ) ) + ( ( A x. D ) + ( C x. B ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcl | |- ( ( A e. CC /\ B e. CC ) -> ( A + B ) e. CC ) |
|
| 2 | adddi | |- ( ( ( A + B ) e. CC /\ C e. CC /\ D e. CC ) -> ( ( A + B ) x. ( C + D ) ) = ( ( ( A + B ) x. C ) + ( ( A + B ) x. D ) ) ) |
|
| 3 | 2 | 3expb | |- ( ( ( A + B ) e. CC /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + B ) x. ( C + D ) ) = ( ( ( A + B ) x. C ) + ( ( A + B ) x. D ) ) ) |
| 4 | 1 3 | sylan | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + B ) x. ( C + D ) ) = ( ( ( A + B ) x. C ) + ( ( A + B ) x. D ) ) ) |
| 5 | adddir | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) x. C ) = ( ( A x. C ) + ( B x. C ) ) ) |
|
| 6 | 5 | 3expa | |- ( ( ( A e. CC /\ B e. CC ) /\ C e. CC ) -> ( ( A + B ) x. C ) = ( ( A x. C ) + ( B x. C ) ) ) |
| 7 | 6 | adantrr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + B ) x. C ) = ( ( A x. C ) + ( B x. C ) ) ) |
| 8 | adddir | |- ( ( A e. CC /\ B e. CC /\ D e. CC ) -> ( ( A + B ) x. D ) = ( ( A x. D ) + ( B x. D ) ) ) |
|
| 9 | 8 | 3expa | |- ( ( ( A e. CC /\ B e. CC ) /\ D e. CC ) -> ( ( A + B ) x. D ) = ( ( A x. D ) + ( B x. D ) ) ) |
| 10 | 9 | adantrl | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + B ) x. D ) = ( ( A x. D ) + ( B x. D ) ) ) |
| 11 | 7 10 | oveq12d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A + B ) x. C ) + ( ( A + B ) x. D ) ) = ( ( ( A x. C ) + ( B x. C ) ) + ( ( A x. D ) + ( B x. D ) ) ) ) |
| 12 | mulcl | |- ( ( A e. CC /\ C e. CC ) -> ( A x. C ) e. CC ) |
|
| 13 | 12 | ad2ant2r | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( A x. C ) e. CC ) |
| 14 | mulcl | |- ( ( B e. CC /\ C e. CC ) -> ( B x. C ) e. CC ) |
|
| 15 | 14 | ad2ant2lr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( B x. C ) e. CC ) |
| 16 | mulcl | |- ( ( A e. CC /\ D e. CC ) -> ( A x. D ) e. CC ) |
|
| 17 | mulcl | |- ( ( B e. CC /\ D e. CC ) -> ( B x. D ) e. CC ) |
|
| 18 | addcl | |- ( ( ( A x. D ) e. CC /\ ( B x. D ) e. CC ) -> ( ( A x. D ) + ( B x. D ) ) e. CC ) |
|
| 19 | 16 17 18 | syl2an | |- ( ( ( A e. CC /\ D e. CC ) /\ ( B e. CC /\ D e. CC ) ) -> ( ( A x. D ) + ( B x. D ) ) e. CC ) |
| 20 | 19 | anandirs | |- ( ( ( A e. CC /\ B e. CC ) /\ D e. CC ) -> ( ( A x. D ) + ( B x. D ) ) e. CC ) |
| 21 | 20 | adantrl | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A x. D ) + ( B x. D ) ) e. CC ) |
| 22 | 13 15 21 | add32d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A x. C ) + ( B x. C ) ) + ( ( A x. D ) + ( B x. D ) ) ) = ( ( ( A x. C ) + ( ( A x. D ) + ( B x. D ) ) ) + ( B x. C ) ) ) |
| 23 | mulcom | |- ( ( B e. CC /\ D e. CC ) -> ( B x. D ) = ( D x. B ) ) |
|
| 24 | 23 | ad2ant2l | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( B x. D ) = ( D x. B ) ) |
| 25 | 24 | oveq2d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A x. C ) + ( A x. D ) ) + ( B x. D ) ) = ( ( ( A x. C ) + ( A x. D ) ) + ( D x. B ) ) ) |
| 26 | 16 | ad2ant2rl | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( A x. D ) e. CC ) |
| 27 | 17 | ad2ant2l | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( B x. D ) e. CC ) |
| 28 | 13 26 27 | addassd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A x. C ) + ( A x. D ) ) + ( B x. D ) ) = ( ( A x. C ) + ( ( A x. D ) + ( B x. D ) ) ) ) |
| 29 | mulcl | |- ( ( D e. CC /\ B e. CC ) -> ( D x. B ) e. CC ) |
|
| 30 | 29 | ancoms | |- ( ( B e. CC /\ D e. CC ) -> ( D x. B ) e. CC ) |
| 31 | 30 | ad2ant2l | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( D x. B ) e. CC ) |
| 32 | 13 26 31 | add32d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A x. C ) + ( A x. D ) ) + ( D x. B ) ) = ( ( ( A x. C ) + ( D x. B ) ) + ( A x. D ) ) ) |
| 33 | 25 28 32 | 3eqtr3d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A x. C ) + ( ( A x. D ) + ( B x. D ) ) ) = ( ( ( A x. C ) + ( D x. B ) ) + ( A x. D ) ) ) |
| 34 | mulcom | |- ( ( B e. CC /\ C e. CC ) -> ( B x. C ) = ( C x. B ) ) |
|
| 35 | 34 | ad2ant2lr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( B x. C ) = ( C x. B ) ) |
| 36 | 33 35 | oveq12d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A x. C ) + ( ( A x. D ) + ( B x. D ) ) ) + ( B x. C ) ) = ( ( ( ( A x. C ) + ( D x. B ) ) + ( A x. D ) ) + ( C x. B ) ) ) |
| 37 | addcl | |- ( ( ( A x. C ) e. CC /\ ( D x. B ) e. CC ) -> ( ( A x. C ) + ( D x. B ) ) e. CC ) |
|
| 38 | 12 30 37 | syl2an | |- ( ( ( A e. CC /\ C e. CC ) /\ ( B e. CC /\ D e. CC ) ) -> ( ( A x. C ) + ( D x. B ) ) e. CC ) |
| 39 | 38 | an4s | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A x. C ) + ( D x. B ) ) e. CC ) |
| 40 | mulcl | |- ( ( C e. CC /\ B e. CC ) -> ( C x. B ) e. CC ) |
|
| 41 | 40 | ancoms | |- ( ( B e. CC /\ C e. CC ) -> ( C x. B ) e. CC ) |
| 42 | 41 | ad2ant2lr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( C x. B ) e. CC ) |
| 43 | 39 26 42 | addassd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( ( A x. C ) + ( D x. B ) ) + ( A x. D ) ) + ( C x. B ) ) = ( ( ( A x. C ) + ( D x. B ) ) + ( ( A x. D ) + ( C x. B ) ) ) ) |
| 44 | 22 36 43 | 3eqtrd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A x. C ) + ( B x. C ) ) + ( ( A x. D ) + ( B x. D ) ) ) = ( ( ( A x. C ) + ( D x. B ) ) + ( ( A x. D ) + ( C x. B ) ) ) ) |
| 45 | 4 11 44 | 3eqtrd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + B ) x. ( C + D ) ) = ( ( ( A x. C ) + ( D x. B ) ) + ( ( A x. D ) + ( C x. B ) ) ) ) |