This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: De Moivre's Formula. Proof by induction given at http://en.wikipedia.org/wiki/De_Moivre's_formula , but restricted to nonnegative integer powers. See also demoivreALT for an alternate longer proof not using the exponential function. (Contributed by NM, 24-Jul-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | demoivre | |- ( ( A e. CC /\ N e. ZZ ) -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ N ) = ( ( cos ` ( N x. A ) ) + ( _i x. ( sin ` ( N x. A ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn | |- _i e. CC |
|
| 2 | mulcl | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
|
| 3 | 1 2 | mpan | |- ( A e. CC -> ( _i x. A ) e. CC ) |
| 4 | efexp | |- ( ( ( _i x. A ) e. CC /\ N e. ZZ ) -> ( exp ` ( N x. ( _i x. A ) ) ) = ( ( exp ` ( _i x. A ) ) ^ N ) ) |
|
| 5 | 3 4 | sylan | |- ( ( A e. CC /\ N e. ZZ ) -> ( exp ` ( N x. ( _i x. A ) ) ) = ( ( exp ` ( _i x. A ) ) ^ N ) ) |
| 6 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 7 | mul12 | |- ( ( N e. CC /\ _i e. CC /\ A e. CC ) -> ( N x. ( _i x. A ) ) = ( _i x. ( N x. A ) ) ) |
|
| 8 | 1 7 | mp3an2 | |- ( ( N e. CC /\ A e. CC ) -> ( N x. ( _i x. A ) ) = ( _i x. ( N x. A ) ) ) |
| 9 | 8 | fveq2d | |- ( ( N e. CC /\ A e. CC ) -> ( exp ` ( N x. ( _i x. A ) ) ) = ( exp ` ( _i x. ( N x. A ) ) ) ) |
| 10 | mulcl | |- ( ( N e. CC /\ A e. CC ) -> ( N x. A ) e. CC ) |
|
| 11 | efival | |- ( ( N x. A ) e. CC -> ( exp ` ( _i x. ( N x. A ) ) ) = ( ( cos ` ( N x. A ) ) + ( _i x. ( sin ` ( N x. A ) ) ) ) ) |
|
| 12 | 10 11 | syl | |- ( ( N e. CC /\ A e. CC ) -> ( exp ` ( _i x. ( N x. A ) ) ) = ( ( cos ` ( N x. A ) ) + ( _i x. ( sin ` ( N x. A ) ) ) ) ) |
| 13 | 9 12 | eqtrd | |- ( ( N e. CC /\ A e. CC ) -> ( exp ` ( N x. ( _i x. A ) ) ) = ( ( cos ` ( N x. A ) ) + ( _i x. ( sin ` ( N x. A ) ) ) ) ) |
| 14 | 13 | ancoms | |- ( ( A e. CC /\ N e. CC ) -> ( exp ` ( N x. ( _i x. A ) ) ) = ( ( cos ` ( N x. A ) ) + ( _i x. ( sin ` ( N x. A ) ) ) ) ) |
| 15 | 6 14 | sylan2 | |- ( ( A e. CC /\ N e. ZZ ) -> ( exp ` ( N x. ( _i x. A ) ) ) = ( ( cos ` ( N x. A ) ) + ( _i x. ( sin ` ( N x. A ) ) ) ) ) |
| 16 | efival | |- ( A e. CC -> ( exp ` ( _i x. A ) ) = ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) |
|
| 17 | 16 | oveq1d | |- ( A e. CC -> ( ( exp ` ( _i x. A ) ) ^ N ) = ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ N ) ) |
| 18 | 17 | adantr | |- ( ( A e. CC /\ N e. ZZ ) -> ( ( exp ` ( _i x. A ) ) ^ N ) = ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ N ) ) |
| 19 | 5 15 18 | 3eqtr3rd | |- ( ( A e. CC /\ N e. ZZ ) -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ N ) = ( ( cos ` ( N x. A ) ) + ( _i x. ( sin ` ( N x. A ) ) ) ) ) |