This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition formula for sine. Equation 14 of Gleason p. 310. (Contributed by Steve Rodriguez, 10-Nov-2006) (Revised by Mario Carneiro, 30-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sinadd | |- ( ( A e. CC /\ B e. CC ) -> ( sin ` ( A + B ) ) = ( ( ( sin ` A ) x. ( cos ` B ) ) + ( ( cos ` A ) x. ( sin ` B ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcl | |- ( ( A e. CC /\ B e. CC ) -> ( A + B ) e. CC ) |
|
| 2 | sinval | |- ( ( A + B ) e. CC -> ( sin ` ( A + B ) ) = ( ( ( exp ` ( _i x. ( A + B ) ) ) - ( exp ` ( -u _i x. ( A + B ) ) ) ) / ( 2 x. _i ) ) ) |
|
| 3 | 1 2 | syl | |- ( ( A e. CC /\ B e. CC ) -> ( sin ` ( A + B ) ) = ( ( ( exp ` ( _i x. ( A + B ) ) ) - ( exp ` ( -u _i x. ( A + B ) ) ) ) / ( 2 x. _i ) ) ) |
| 4 | 2cn | |- 2 e. CC |
|
| 5 | 4 | a1i | |- ( ( A e. CC /\ B e. CC ) -> 2 e. CC ) |
| 6 | ax-icn | |- _i e. CC |
|
| 7 | 6 | a1i | |- ( ( A e. CC /\ B e. CC ) -> _i e. CC ) |
| 8 | coscl | |- ( A e. CC -> ( cos ` A ) e. CC ) |
|
| 9 | 8 | adantr | |- ( ( A e. CC /\ B e. CC ) -> ( cos ` A ) e. CC ) |
| 10 | sincl | |- ( B e. CC -> ( sin ` B ) e. CC ) |
|
| 11 | 10 | adantl | |- ( ( A e. CC /\ B e. CC ) -> ( sin ` B ) e. CC ) |
| 12 | 9 11 | mulcld | |- ( ( A e. CC /\ B e. CC ) -> ( ( cos ` A ) x. ( sin ` B ) ) e. CC ) |
| 13 | sincl | |- ( A e. CC -> ( sin ` A ) e. CC ) |
|
| 14 | 13 | adantr | |- ( ( A e. CC /\ B e. CC ) -> ( sin ` A ) e. CC ) |
| 15 | coscl | |- ( B e. CC -> ( cos ` B ) e. CC ) |
|
| 16 | 15 | adantl | |- ( ( A e. CC /\ B e. CC ) -> ( cos ` B ) e. CC ) |
| 17 | 14 16 | mulcld | |- ( ( A e. CC /\ B e. CC ) -> ( ( sin ` A ) x. ( cos ` B ) ) e. CC ) |
| 18 | 12 17 | addcld | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( cos ` A ) x. ( sin ` B ) ) + ( ( sin ` A ) x. ( cos ` B ) ) ) e. CC ) |
| 19 | 5 7 18 | mulassd | |- ( ( A e. CC /\ B e. CC ) -> ( ( 2 x. _i ) x. ( ( ( cos ` A ) x. ( sin ` B ) ) + ( ( sin ` A ) x. ( cos ` B ) ) ) ) = ( 2 x. ( _i x. ( ( ( cos ` A ) x. ( sin ` B ) ) + ( ( sin ` A ) x. ( cos ` B ) ) ) ) ) ) |
| 20 | 7 12 17 | adddid | |- ( ( A e. CC /\ B e. CC ) -> ( _i x. ( ( ( cos ` A ) x. ( sin ` B ) ) + ( ( sin ` A ) x. ( cos ` B ) ) ) ) = ( ( _i x. ( ( cos ` A ) x. ( sin ` B ) ) ) + ( _i x. ( ( sin ` A ) x. ( cos ` B ) ) ) ) ) |
| 21 | 7 9 11 | mul12d | |- ( ( A e. CC /\ B e. CC ) -> ( _i x. ( ( cos ` A ) x. ( sin ` B ) ) ) = ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) ) |
| 22 | 14 16 | mulcomd | |- ( ( A e. CC /\ B e. CC ) -> ( ( sin ` A ) x. ( cos ` B ) ) = ( ( cos ` B ) x. ( sin ` A ) ) ) |
| 23 | 22 | oveq2d | |- ( ( A e. CC /\ B e. CC ) -> ( _i x. ( ( sin ` A ) x. ( cos ` B ) ) ) = ( _i x. ( ( cos ` B ) x. ( sin ` A ) ) ) ) |
| 24 | 7 16 14 | mul12d | |- ( ( A e. CC /\ B e. CC ) -> ( _i x. ( ( cos ` B ) x. ( sin ` A ) ) ) = ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) |
| 25 | 23 24 | eqtrd | |- ( ( A e. CC /\ B e. CC ) -> ( _i x. ( ( sin ` A ) x. ( cos ` B ) ) ) = ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) |
| 26 | 21 25 | oveq12d | |- ( ( A e. CC /\ B e. CC ) -> ( ( _i x. ( ( cos ` A ) x. ( sin ` B ) ) ) + ( _i x. ( ( sin ` A ) x. ( cos ` B ) ) ) ) = ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) |
| 27 | 20 26 | eqtrd | |- ( ( A e. CC /\ B e. CC ) -> ( _i x. ( ( ( cos ` A ) x. ( sin ` B ) ) + ( ( sin ` A ) x. ( cos ` B ) ) ) ) = ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) |
| 28 | 27 | oveq2d | |- ( ( A e. CC /\ B e. CC ) -> ( 2 x. ( _i x. ( ( ( cos ` A ) x. ( sin ` B ) ) + ( ( sin ` A ) x. ( cos ` B ) ) ) ) ) = ( 2 x. ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) |
| 29 | 19 28 | eqtrd | |- ( ( A e. CC /\ B e. CC ) -> ( ( 2 x. _i ) x. ( ( ( cos ` A ) x. ( sin ` B ) ) + ( ( sin ` A ) x. ( cos ` B ) ) ) ) = ( 2 x. ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) |
| 30 | mulcl | |- ( ( _i e. CC /\ ( sin ` B ) e. CC ) -> ( _i x. ( sin ` B ) ) e. CC ) |
|
| 31 | 6 11 30 | sylancr | |- ( ( A e. CC /\ B e. CC ) -> ( _i x. ( sin ` B ) ) e. CC ) |
| 32 | 9 31 | mulcld | |- ( ( A e. CC /\ B e. CC ) -> ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) e. CC ) |
| 33 | mulcl | |- ( ( _i e. CC /\ ( sin ` A ) e. CC ) -> ( _i x. ( sin ` A ) ) e. CC ) |
|
| 34 | 6 14 33 | sylancr | |- ( ( A e. CC /\ B e. CC ) -> ( _i x. ( sin ` A ) ) e. CC ) |
| 35 | 16 34 | mulcld | |- ( ( A e. CC /\ B e. CC ) -> ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) e. CC ) |
| 36 | 32 35 | addcld | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) e. CC ) |
| 37 | mulcl | |- ( ( 2 e. CC /\ ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) e. CC ) -> ( 2 x. ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) e. CC ) |
|
| 38 | 4 36 37 | sylancr | |- ( ( A e. CC /\ B e. CC ) -> ( 2 x. ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) e. CC ) |
| 39 | 2mulicn | |- ( 2 x. _i ) e. CC |
|
| 40 | 39 | a1i | |- ( ( A e. CC /\ B e. CC ) -> ( 2 x. _i ) e. CC ) |
| 41 | 2muline0 | |- ( 2 x. _i ) =/= 0 |
|
| 42 | 41 | a1i | |- ( ( A e. CC /\ B e. CC ) -> ( 2 x. _i ) =/= 0 ) |
| 43 | 38 40 18 42 | divmuld | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( 2 x. ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) / ( 2 x. _i ) ) = ( ( ( cos ` A ) x. ( sin ` B ) ) + ( ( sin ` A ) x. ( cos ` B ) ) ) <-> ( ( 2 x. _i ) x. ( ( ( cos ` A ) x. ( sin ` B ) ) + ( ( sin ` A ) x. ( cos ` B ) ) ) ) = ( 2 x. ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) ) |
| 44 | 29 43 | mpbird | |- ( ( A e. CC /\ B e. CC ) -> ( ( 2 x. ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) / ( 2 x. _i ) ) = ( ( ( cos ` A ) x. ( sin ` B ) ) + ( ( sin ` A ) x. ( cos ` B ) ) ) ) |
| 45 | 9 16 | mulcld | |- ( ( A e. CC /\ B e. CC ) -> ( ( cos ` A ) x. ( cos ` B ) ) e. CC ) |
| 46 | 31 34 | mulcld | |- ( ( A e. CC /\ B e. CC ) -> ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) e. CC ) |
| 47 | 45 46 | addcld | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) e. CC ) |
| 48 | 47 36 36 | pnncand | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) + ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) - ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) - ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) = ( ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) + ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) |
| 49 | adddi | |- ( ( _i e. CC /\ A e. CC /\ B e. CC ) -> ( _i x. ( A + B ) ) = ( ( _i x. A ) + ( _i x. B ) ) ) |
|
| 50 | 6 49 | mp3an1 | |- ( ( A e. CC /\ B e. CC ) -> ( _i x. ( A + B ) ) = ( ( _i x. A ) + ( _i x. B ) ) ) |
| 51 | 50 | fveq2d | |- ( ( A e. CC /\ B e. CC ) -> ( exp ` ( _i x. ( A + B ) ) ) = ( exp ` ( ( _i x. A ) + ( _i x. B ) ) ) ) |
| 52 | simpl | |- ( ( A e. CC /\ B e. CC ) -> A e. CC ) |
|
| 53 | mulcl | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
|
| 54 | 6 52 53 | sylancr | |- ( ( A e. CC /\ B e. CC ) -> ( _i x. A ) e. CC ) |
| 55 | simpr | |- ( ( A e. CC /\ B e. CC ) -> B e. CC ) |
|
| 56 | mulcl | |- ( ( _i e. CC /\ B e. CC ) -> ( _i x. B ) e. CC ) |
|
| 57 | 6 55 56 | sylancr | |- ( ( A e. CC /\ B e. CC ) -> ( _i x. B ) e. CC ) |
| 58 | efadd | |- ( ( ( _i x. A ) e. CC /\ ( _i x. B ) e. CC ) -> ( exp ` ( ( _i x. A ) + ( _i x. B ) ) ) = ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. B ) ) ) ) |
|
| 59 | 54 57 58 | syl2anc | |- ( ( A e. CC /\ B e. CC ) -> ( exp ` ( ( _i x. A ) + ( _i x. B ) ) ) = ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. B ) ) ) ) |
| 60 | efival | |- ( A e. CC -> ( exp ` ( _i x. A ) ) = ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) |
|
| 61 | efival | |- ( B e. CC -> ( exp ` ( _i x. B ) ) = ( ( cos ` B ) + ( _i x. ( sin ` B ) ) ) ) |
|
| 62 | 60 61 | oveqan12d | |- ( ( A e. CC /\ B e. CC ) -> ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. B ) ) ) = ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) x. ( ( cos ` B ) + ( _i x. ( sin ` B ) ) ) ) ) |
| 63 | 9 34 16 31 | muladdd | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) x. ( ( cos ` B ) + ( _i x. ( sin ` B ) ) ) ) = ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) + ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) |
| 64 | 62 63 | eqtrd | |- ( ( A e. CC /\ B e. CC ) -> ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. B ) ) ) = ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) + ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) |
| 65 | 51 59 64 | 3eqtrd | |- ( ( A e. CC /\ B e. CC ) -> ( exp ` ( _i x. ( A + B ) ) ) = ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) + ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) |
| 66 | negicn | |- -u _i e. CC |
|
| 67 | adddi | |- ( ( -u _i e. CC /\ A e. CC /\ B e. CC ) -> ( -u _i x. ( A + B ) ) = ( ( -u _i x. A ) + ( -u _i x. B ) ) ) |
|
| 68 | 66 67 | mp3an1 | |- ( ( A e. CC /\ B e. CC ) -> ( -u _i x. ( A + B ) ) = ( ( -u _i x. A ) + ( -u _i x. B ) ) ) |
| 69 | 68 | fveq2d | |- ( ( A e. CC /\ B e. CC ) -> ( exp ` ( -u _i x. ( A + B ) ) ) = ( exp ` ( ( -u _i x. A ) + ( -u _i x. B ) ) ) ) |
| 70 | mulcl | |- ( ( -u _i e. CC /\ A e. CC ) -> ( -u _i x. A ) e. CC ) |
|
| 71 | 66 52 70 | sylancr | |- ( ( A e. CC /\ B e. CC ) -> ( -u _i x. A ) e. CC ) |
| 72 | mulcl | |- ( ( -u _i e. CC /\ B e. CC ) -> ( -u _i x. B ) e. CC ) |
|
| 73 | 66 55 72 | sylancr | |- ( ( A e. CC /\ B e. CC ) -> ( -u _i x. B ) e. CC ) |
| 74 | efadd | |- ( ( ( -u _i x. A ) e. CC /\ ( -u _i x. B ) e. CC ) -> ( exp ` ( ( -u _i x. A ) + ( -u _i x. B ) ) ) = ( ( exp ` ( -u _i x. A ) ) x. ( exp ` ( -u _i x. B ) ) ) ) |
|
| 75 | 71 73 74 | syl2anc | |- ( ( A e. CC /\ B e. CC ) -> ( exp ` ( ( -u _i x. A ) + ( -u _i x. B ) ) ) = ( ( exp ` ( -u _i x. A ) ) x. ( exp ` ( -u _i x. B ) ) ) ) |
| 76 | efmival | |- ( A e. CC -> ( exp ` ( -u _i x. A ) ) = ( ( cos ` A ) - ( _i x. ( sin ` A ) ) ) ) |
|
| 77 | efmival | |- ( B e. CC -> ( exp ` ( -u _i x. B ) ) = ( ( cos ` B ) - ( _i x. ( sin ` B ) ) ) ) |
|
| 78 | 76 77 | oveqan12d | |- ( ( A e. CC /\ B e. CC ) -> ( ( exp ` ( -u _i x. A ) ) x. ( exp ` ( -u _i x. B ) ) ) = ( ( ( cos ` A ) - ( _i x. ( sin ` A ) ) ) x. ( ( cos ` B ) - ( _i x. ( sin ` B ) ) ) ) ) |
| 79 | 9 34 16 31 | mulsubd | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( cos ` A ) - ( _i x. ( sin ` A ) ) ) x. ( ( cos ` B ) - ( _i x. ( sin ` B ) ) ) ) = ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) - ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) |
| 80 | 78 79 | eqtrd | |- ( ( A e. CC /\ B e. CC ) -> ( ( exp ` ( -u _i x. A ) ) x. ( exp ` ( -u _i x. B ) ) ) = ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) - ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) |
| 81 | 69 75 80 | 3eqtrd | |- ( ( A e. CC /\ B e. CC ) -> ( exp ` ( -u _i x. ( A + B ) ) ) = ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) - ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) |
| 82 | 65 81 | oveq12d | |- ( ( A e. CC /\ B e. CC ) -> ( ( exp ` ( _i x. ( A + B ) ) ) - ( exp ` ( -u _i x. ( A + B ) ) ) ) = ( ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) + ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) - ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) - ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) ) |
| 83 | 36 | 2timesd | |- ( ( A e. CC /\ B e. CC ) -> ( 2 x. ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) = ( ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) + ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) |
| 84 | 48 82 83 | 3eqtr4d | |- ( ( A e. CC /\ B e. CC ) -> ( ( exp ` ( _i x. ( A + B ) ) ) - ( exp ` ( -u _i x. ( A + B ) ) ) ) = ( 2 x. ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) |
| 85 | 84 | oveq1d | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( exp ` ( _i x. ( A + B ) ) ) - ( exp ` ( -u _i x. ( A + B ) ) ) ) / ( 2 x. _i ) ) = ( ( 2 x. ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) / ( 2 x. _i ) ) ) |
| 86 | 17 12 | addcomd | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( sin ` A ) x. ( cos ` B ) ) + ( ( cos ` A ) x. ( sin ` B ) ) ) = ( ( ( cos ` A ) x. ( sin ` B ) ) + ( ( sin ` A ) x. ( cos ` B ) ) ) ) |
| 87 | 44 85 86 | 3eqtr4d | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( exp ` ( _i x. ( A + B ) ) ) - ( exp ` ( -u _i x. ( A + B ) ) ) ) / ( 2 x. _i ) ) = ( ( ( sin ` A ) x. ( cos ` B ) ) + ( ( cos ` A ) x. ( sin ` B ) ) ) ) |
| 88 | 3 87 | eqtrd | |- ( ( A e. CC /\ B e. CC ) -> ( sin ` ( A + B ) ) = ( ( ( sin ` A ) x. ( cos ` B ) ) + ( ( cos ` A ) x. ( sin ` B ) ) ) ) |