This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition formula for cosine. Equation 15 of Gleason p. 310. (Contributed by NM, 15-Jan-2006) (Revised by Mario Carneiro, 30-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cosadd | |- ( ( A e. CC /\ B e. CC ) -> ( cos ` ( A + B ) ) = ( ( ( cos ` A ) x. ( cos ` B ) ) - ( ( sin ` A ) x. ( sin ` B ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcl | |- ( ( A e. CC /\ B e. CC ) -> ( A + B ) e. CC ) |
|
| 2 | cosval | |- ( ( A + B ) e. CC -> ( cos ` ( A + B ) ) = ( ( ( exp ` ( _i x. ( A + B ) ) ) + ( exp ` ( -u _i x. ( A + B ) ) ) ) / 2 ) ) |
|
| 3 | 1 2 | syl | |- ( ( A e. CC /\ B e. CC ) -> ( cos ` ( A + B ) ) = ( ( ( exp ` ( _i x. ( A + B ) ) ) + ( exp ` ( -u _i x. ( A + B ) ) ) ) / 2 ) ) |
| 4 | coscl | |- ( A e. CC -> ( cos ` A ) e. CC ) |
|
| 5 | 4 | adantr | |- ( ( A e. CC /\ B e. CC ) -> ( cos ` A ) e. CC ) |
| 6 | coscl | |- ( B e. CC -> ( cos ` B ) e. CC ) |
|
| 7 | 6 | adantl | |- ( ( A e. CC /\ B e. CC ) -> ( cos ` B ) e. CC ) |
| 8 | 5 7 | mulcld | |- ( ( A e. CC /\ B e. CC ) -> ( ( cos ` A ) x. ( cos ` B ) ) e. CC ) |
| 9 | ax-icn | |- _i e. CC |
|
| 10 | sincl | |- ( B e. CC -> ( sin ` B ) e. CC ) |
|
| 11 | 10 | adantl | |- ( ( A e. CC /\ B e. CC ) -> ( sin ` B ) e. CC ) |
| 12 | mulcl | |- ( ( _i e. CC /\ ( sin ` B ) e. CC ) -> ( _i x. ( sin ` B ) ) e. CC ) |
|
| 13 | 9 11 12 | sylancr | |- ( ( A e. CC /\ B e. CC ) -> ( _i x. ( sin ` B ) ) e. CC ) |
| 14 | sincl | |- ( A e. CC -> ( sin ` A ) e. CC ) |
|
| 15 | 14 | adantr | |- ( ( A e. CC /\ B e. CC ) -> ( sin ` A ) e. CC ) |
| 16 | mulcl | |- ( ( _i e. CC /\ ( sin ` A ) e. CC ) -> ( _i x. ( sin ` A ) ) e. CC ) |
|
| 17 | 9 15 16 | sylancr | |- ( ( A e. CC /\ B e. CC ) -> ( _i x. ( sin ` A ) ) e. CC ) |
| 18 | 13 17 | mulcld | |- ( ( A e. CC /\ B e. CC ) -> ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) e. CC ) |
| 19 | 8 18 | addcld | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) e. CC ) |
| 20 | 5 13 | mulcld | |- ( ( A e. CC /\ B e. CC ) -> ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) e. CC ) |
| 21 | 7 17 | mulcld | |- ( ( A e. CC /\ B e. CC ) -> ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) e. CC ) |
| 22 | 20 21 | addcld | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) e. CC ) |
| 23 | 19 22 19 | ppncand | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) + ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) + ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) - ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) = ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) + ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) ) ) |
| 24 | adddi | |- ( ( _i e. CC /\ A e. CC /\ B e. CC ) -> ( _i x. ( A + B ) ) = ( ( _i x. A ) + ( _i x. B ) ) ) |
|
| 25 | 9 24 | mp3an1 | |- ( ( A e. CC /\ B e. CC ) -> ( _i x. ( A + B ) ) = ( ( _i x. A ) + ( _i x. B ) ) ) |
| 26 | 25 | fveq2d | |- ( ( A e. CC /\ B e. CC ) -> ( exp ` ( _i x. ( A + B ) ) ) = ( exp ` ( ( _i x. A ) + ( _i x. B ) ) ) ) |
| 27 | simpl | |- ( ( A e. CC /\ B e. CC ) -> A e. CC ) |
|
| 28 | mulcl | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
|
| 29 | 9 27 28 | sylancr | |- ( ( A e. CC /\ B e. CC ) -> ( _i x. A ) e. CC ) |
| 30 | simpr | |- ( ( A e. CC /\ B e. CC ) -> B e. CC ) |
|
| 31 | mulcl | |- ( ( _i e. CC /\ B e. CC ) -> ( _i x. B ) e. CC ) |
|
| 32 | 9 30 31 | sylancr | |- ( ( A e. CC /\ B e. CC ) -> ( _i x. B ) e. CC ) |
| 33 | efadd | |- ( ( ( _i x. A ) e. CC /\ ( _i x. B ) e. CC ) -> ( exp ` ( ( _i x. A ) + ( _i x. B ) ) ) = ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. B ) ) ) ) |
|
| 34 | 29 32 33 | syl2anc | |- ( ( A e. CC /\ B e. CC ) -> ( exp ` ( ( _i x. A ) + ( _i x. B ) ) ) = ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. B ) ) ) ) |
| 35 | efival | |- ( A e. CC -> ( exp ` ( _i x. A ) ) = ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) |
|
| 36 | efival | |- ( B e. CC -> ( exp ` ( _i x. B ) ) = ( ( cos ` B ) + ( _i x. ( sin ` B ) ) ) ) |
|
| 37 | 35 36 | oveqan12d | |- ( ( A e. CC /\ B e. CC ) -> ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. B ) ) ) = ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) x. ( ( cos ` B ) + ( _i x. ( sin ` B ) ) ) ) ) |
| 38 | 5 17 7 13 | muladdd | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) x. ( ( cos ` B ) + ( _i x. ( sin ` B ) ) ) ) = ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) + ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) |
| 39 | 37 38 | eqtrd | |- ( ( A e. CC /\ B e. CC ) -> ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. B ) ) ) = ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) + ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) |
| 40 | 26 34 39 | 3eqtrd | |- ( ( A e. CC /\ B e. CC ) -> ( exp ` ( _i x. ( A + B ) ) ) = ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) + ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) |
| 41 | negicn | |- -u _i e. CC |
|
| 42 | adddi | |- ( ( -u _i e. CC /\ A e. CC /\ B e. CC ) -> ( -u _i x. ( A + B ) ) = ( ( -u _i x. A ) + ( -u _i x. B ) ) ) |
|
| 43 | 41 42 | mp3an1 | |- ( ( A e. CC /\ B e. CC ) -> ( -u _i x. ( A + B ) ) = ( ( -u _i x. A ) + ( -u _i x. B ) ) ) |
| 44 | 43 | fveq2d | |- ( ( A e. CC /\ B e. CC ) -> ( exp ` ( -u _i x. ( A + B ) ) ) = ( exp ` ( ( -u _i x. A ) + ( -u _i x. B ) ) ) ) |
| 45 | mulcl | |- ( ( -u _i e. CC /\ A e. CC ) -> ( -u _i x. A ) e. CC ) |
|
| 46 | 41 27 45 | sylancr | |- ( ( A e. CC /\ B e. CC ) -> ( -u _i x. A ) e. CC ) |
| 47 | mulcl | |- ( ( -u _i e. CC /\ B e. CC ) -> ( -u _i x. B ) e. CC ) |
|
| 48 | 41 30 47 | sylancr | |- ( ( A e. CC /\ B e. CC ) -> ( -u _i x. B ) e. CC ) |
| 49 | efadd | |- ( ( ( -u _i x. A ) e. CC /\ ( -u _i x. B ) e. CC ) -> ( exp ` ( ( -u _i x. A ) + ( -u _i x. B ) ) ) = ( ( exp ` ( -u _i x. A ) ) x. ( exp ` ( -u _i x. B ) ) ) ) |
|
| 50 | 46 48 49 | syl2anc | |- ( ( A e. CC /\ B e. CC ) -> ( exp ` ( ( -u _i x. A ) + ( -u _i x. B ) ) ) = ( ( exp ` ( -u _i x. A ) ) x. ( exp ` ( -u _i x. B ) ) ) ) |
| 51 | efmival | |- ( A e. CC -> ( exp ` ( -u _i x. A ) ) = ( ( cos ` A ) - ( _i x. ( sin ` A ) ) ) ) |
|
| 52 | efmival | |- ( B e. CC -> ( exp ` ( -u _i x. B ) ) = ( ( cos ` B ) - ( _i x. ( sin ` B ) ) ) ) |
|
| 53 | 51 52 | oveqan12d | |- ( ( A e. CC /\ B e. CC ) -> ( ( exp ` ( -u _i x. A ) ) x. ( exp ` ( -u _i x. B ) ) ) = ( ( ( cos ` A ) - ( _i x. ( sin ` A ) ) ) x. ( ( cos ` B ) - ( _i x. ( sin ` B ) ) ) ) ) |
| 54 | 5 17 7 13 | mulsubd | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( cos ` A ) - ( _i x. ( sin ` A ) ) ) x. ( ( cos ` B ) - ( _i x. ( sin ` B ) ) ) ) = ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) - ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) |
| 55 | 53 54 | eqtrd | |- ( ( A e. CC /\ B e. CC ) -> ( ( exp ` ( -u _i x. A ) ) x. ( exp ` ( -u _i x. B ) ) ) = ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) - ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) |
| 56 | 44 50 55 | 3eqtrd | |- ( ( A e. CC /\ B e. CC ) -> ( exp ` ( -u _i x. ( A + B ) ) ) = ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) - ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) |
| 57 | 40 56 | oveq12d | |- ( ( A e. CC /\ B e. CC ) -> ( ( exp ` ( _i x. ( A + B ) ) ) + ( exp ` ( -u _i x. ( A + B ) ) ) ) = ( ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) + ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) + ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) - ( ( ( cos ` A ) x. ( _i x. ( sin ` B ) ) ) + ( ( cos ` B ) x. ( _i x. ( sin ` A ) ) ) ) ) ) ) |
| 58 | 19 | 2timesd | |- ( ( A e. CC /\ B e. CC ) -> ( 2 x. ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) ) = ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) + ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) ) ) |
| 59 | 23 57 58 | 3eqtr4d | |- ( ( A e. CC /\ B e. CC ) -> ( ( exp ` ( _i x. ( A + B ) ) ) + ( exp ` ( -u _i x. ( A + B ) ) ) ) = ( 2 x. ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) ) ) |
| 60 | 59 | oveq1d | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( exp ` ( _i x. ( A + B ) ) ) + ( exp ` ( -u _i x. ( A + B ) ) ) ) / 2 ) = ( ( 2 x. ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) ) / 2 ) ) |
| 61 | 2cn | |- 2 e. CC |
|
| 62 | 2ne0 | |- 2 =/= 0 |
|
| 63 | divcan3 | |- ( ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( 2 x. ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) ) / 2 ) = ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) ) |
|
| 64 | 61 62 63 | mp3an23 | |- ( ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) e. CC -> ( ( 2 x. ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) ) / 2 ) = ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) ) |
| 65 | 19 64 | syl | |- ( ( A e. CC /\ B e. CC ) -> ( ( 2 x. ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) ) / 2 ) = ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) ) |
| 66 | 9 | a1i | |- ( ( A e. CC /\ B e. CC ) -> _i e. CC ) |
| 67 | 66 11 66 15 | mul4d | |- ( ( A e. CC /\ B e. CC ) -> ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) = ( ( _i x. _i ) x. ( ( sin ` B ) x. ( sin ` A ) ) ) ) |
| 68 | ixi | |- ( _i x. _i ) = -u 1 |
|
| 69 | 68 | oveq1i | |- ( ( _i x. _i ) x. ( ( sin ` B ) x. ( sin ` A ) ) ) = ( -u 1 x. ( ( sin ` B ) x. ( sin ` A ) ) ) |
| 70 | 11 15 | mulcomd | |- ( ( A e. CC /\ B e. CC ) -> ( ( sin ` B ) x. ( sin ` A ) ) = ( ( sin ` A ) x. ( sin ` B ) ) ) |
| 71 | 70 | oveq2d | |- ( ( A e. CC /\ B e. CC ) -> ( -u 1 x. ( ( sin ` B ) x. ( sin ` A ) ) ) = ( -u 1 x. ( ( sin ` A ) x. ( sin ` B ) ) ) ) |
| 72 | 69 71 | eqtrid | |- ( ( A e. CC /\ B e. CC ) -> ( ( _i x. _i ) x. ( ( sin ` B ) x. ( sin ` A ) ) ) = ( -u 1 x. ( ( sin ` A ) x. ( sin ` B ) ) ) ) |
| 73 | 15 11 | mulcld | |- ( ( A e. CC /\ B e. CC ) -> ( ( sin ` A ) x. ( sin ` B ) ) e. CC ) |
| 74 | 73 | mulm1d | |- ( ( A e. CC /\ B e. CC ) -> ( -u 1 x. ( ( sin ` A ) x. ( sin ` B ) ) ) = -u ( ( sin ` A ) x. ( sin ` B ) ) ) |
| 75 | 67 72 74 | 3eqtrd | |- ( ( A e. CC /\ B e. CC ) -> ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) = -u ( ( sin ` A ) x. ( sin ` B ) ) ) |
| 76 | 75 | oveq2d | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) = ( ( ( cos ` A ) x. ( cos ` B ) ) + -u ( ( sin ` A ) x. ( sin ` B ) ) ) ) |
| 77 | 8 73 | negsubd | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( cos ` A ) x. ( cos ` B ) ) + -u ( ( sin ` A ) x. ( sin ` B ) ) ) = ( ( ( cos ` A ) x. ( cos ` B ) ) - ( ( sin ` A ) x. ( sin ` B ) ) ) ) |
| 78 | 65 76 77 | 3eqtrd | |- ( ( A e. CC /\ B e. CC ) -> ( ( 2 x. ( ( ( cos ` A ) x. ( cos ` B ) ) + ( ( _i x. ( sin ` B ) ) x. ( _i x. ( sin ` A ) ) ) ) ) / 2 ) = ( ( ( cos ` A ) x. ( cos ` B ) ) - ( ( sin ` A ) x. ( sin ` B ) ) ) ) |
| 79 | 3 60 78 | 3eqtrd | |- ( ( A e. CC /\ B e. CC ) -> ( cos ` ( A + B ) ) = ( ( ( cos ` A ) x. ( cos ` B ) ) - ( ( sin ` A ) x. ( sin ` B ) ) ) ) |