This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The number of vertices of a (non-trivial) cycle is the number of edges in the cycle. (Contributed by AV, 5-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cyclnumvtx | |- ( ( 1 <_ ( # ` F ) /\ F ( Cycles ` G ) P ) -> ( # ` ran P ) = ( # ` F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscycl | |- ( F ( Cycles ` G ) P <-> ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) |
|
| 2 | pthiswlk | |- ( F ( Paths ` G ) P -> F ( Walks ` G ) P ) |
|
| 3 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 4 | 3 | wlkp | |- ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
| 5 | wlkcl | |- ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 ) |
|
| 6 | elnnnn0c | |- ( ( # ` F ) e. NN <-> ( ( # ` F ) e. NN0 /\ 1 <_ ( # ` F ) ) ) |
|
| 7 | frel | |- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> Rel P ) |
|
| 8 | 7 | 3ad2ant1 | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> Rel P ) |
| 9 | fz1ssfz0 | |- ( 1 ... ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) |
|
| 10 | fdm | |- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> dom P = ( 0 ... ( # ` F ) ) ) |
|
| 11 | 9 10 | sseqtrrid | |- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( 1 ... ( # ` F ) ) C_ dom P ) |
| 12 | 11 | 3ad2ant1 | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( 1 ... ( # ` F ) ) C_ dom P ) |
| 13 | 8 12 | jca | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( Rel P /\ ( 1 ... ( # ` F ) ) C_ dom P ) ) |
| 14 | 10 | 3ad2ant1 | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> dom P = ( 0 ... ( # ` F ) ) ) |
| 15 | 14 | difeq1d | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( dom P \ ( 1 ... ( # ` F ) ) ) = ( ( 0 ... ( # ` F ) ) \ ( 1 ... ( # ` F ) ) ) ) |
| 16 | nnnn0 | |- ( ( # ` F ) e. NN -> ( # ` F ) e. NN0 ) |
|
| 17 | fz0sn0fz1 | |- ( ( # ` F ) e. NN0 -> ( 0 ... ( # ` F ) ) = ( { 0 } u. ( 1 ... ( # ` F ) ) ) ) |
|
| 18 | 16 17 | syl | |- ( ( # ` F ) e. NN -> ( 0 ... ( # ` F ) ) = ( { 0 } u. ( 1 ... ( # ` F ) ) ) ) |
| 19 | 18 | difeq1d | |- ( ( # ` F ) e. NN -> ( ( 0 ... ( # ` F ) ) \ ( 1 ... ( # ` F ) ) ) = ( ( { 0 } u. ( 1 ... ( # ` F ) ) ) \ ( 1 ... ( # ` F ) ) ) ) |
| 20 | 1e0p1 | |- 1 = ( 0 + 1 ) |
|
| 21 | 20 | oveq1i | |- ( 1 ... ( # ` F ) ) = ( ( 0 + 1 ) ... ( # ` F ) ) |
| 22 | 21 | ineq2i | |- ( { 0 } i^i ( 1 ... ( # ` F ) ) ) = ( { 0 } i^i ( ( 0 + 1 ) ... ( # ` F ) ) ) |
| 23 | 22 | a1i | |- ( ( # ` F ) e. NN -> ( { 0 } i^i ( 1 ... ( # ` F ) ) ) = ( { 0 } i^i ( ( 0 + 1 ) ... ( # ` F ) ) ) ) |
| 24 | elnn0uz | |- ( ( # ` F ) e. NN0 <-> ( # ` F ) e. ( ZZ>= ` 0 ) ) |
|
| 25 | 16 24 | sylib | |- ( ( # ` F ) e. NN -> ( # ` F ) e. ( ZZ>= ` 0 ) ) |
| 26 | fzpreddisj | |- ( ( # ` F ) e. ( ZZ>= ` 0 ) -> ( { 0 } i^i ( ( 0 + 1 ) ... ( # ` F ) ) ) = (/) ) |
|
| 27 | 25 26 | syl | |- ( ( # ` F ) e. NN -> ( { 0 } i^i ( ( 0 + 1 ) ... ( # ` F ) ) ) = (/) ) |
| 28 | 23 27 | eqtrd | |- ( ( # ` F ) e. NN -> ( { 0 } i^i ( 1 ... ( # ` F ) ) ) = (/) ) |
| 29 | undif5 | |- ( ( { 0 } i^i ( 1 ... ( # ` F ) ) ) = (/) -> ( ( { 0 } u. ( 1 ... ( # ` F ) ) ) \ ( 1 ... ( # ` F ) ) ) = { 0 } ) |
|
| 30 | 28 29 | syl | |- ( ( # ` F ) e. NN -> ( ( { 0 } u. ( 1 ... ( # ` F ) ) ) \ ( 1 ... ( # ` F ) ) ) = { 0 } ) |
| 31 | 19 30 | eqtrd | |- ( ( # ` F ) e. NN -> ( ( 0 ... ( # ` F ) ) \ ( 1 ... ( # ` F ) ) ) = { 0 } ) |
| 32 | 31 | 3ad2ant2 | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( 0 ... ( # ` F ) ) \ ( 1 ... ( # ` F ) ) ) = { 0 } ) |
| 33 | 15 32 | eqtrd | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( dom P \ ( 1 ... ( # ` F ) ) ) = { 0 } ) |
| 34 | 33 | imaeq2d | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) = ( P " { 0 } ) ) |
| 35 | ffn | |- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> P Fn ( 0 ... ( # ` F ) ) ) |
|
| 36 | 0elfz | |- ( ( # ` F ) e. NN0 -> 0 e. ( 0 ... ( # ` F ) ) ) |
|
| 37 | 16 36 | syl | |- ( ( # ` F ) e. NN -> 0 e. ( 0 ... ( # ` F ) ) ) |
| 38 | 35 37 | anim12i | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN ) -> ( P Fn ( 0 ... ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) ) ) |
| 39 | 38 | 3adant3 | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( P Fn ( 0 ... ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) ) ) |
| 40 | fnsnfv | |- ( ( P Fn ( 0 ... ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) ) -> { ( P ` 0 ) } = ( P " { 0 } ) ) |
|
| 41 | 39 40 | syl | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> { ( P ` 0 ) } = ( P " { 0 } ) ) |
| 42 | 34 41 | eqtr4d | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) = { ( P ` 0 ) } ) |
| 43 | elfz1end | |- ( ( # ` F ) e. NN <-> ( # ` F ) e. ( 1 ... ( # ` F ) ) ) |
|
| 44 | 43 | biimpi | |- ( ( # ` F ) e. NN -> ( # ` F ) e. ( 1 ... ( # ` F ) ) ) |
| 45 | 44 | 3ad2ant2 | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( # ` F ) e. ( 1 ... ( # ` F ) ) ) |
| 46 | 45 | fvresd | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( P |` ( 1 ... ( # ` F ) ) ) ` ( # ` F ) ) = ( P ` ( # ` F ) ) ) |
| 47 | ffun | |- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> Fun P ) |
|
| 48 | 47 | funresd | |- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> Fun ( P |` ( 1 ... ( # ` F ) ) ) ) |
| 49 | 48 | 3ad2ant1 | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> Fun ( P |` ( 1 ... ( # ` F ) ) ) ) |
| 50 | ssdmres | |- ( ( 1 ... ( # ` F ) ) C_ dom P <-> dom ( P |` ( 1 ... ( # ` F ) ) ) = ( 1 ... ( # ` F ) ) ) |
|
| 51 | 12 50 | sylib | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> dom ( P |` ( 1 ... ( # ` F ) ) ) = ( 1 ... ( # ` F ) ) ) |
| 52 | 45 51 | eleqtrrd | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( # ` F ) e. dom ( P |` ( 1 ... ( # ` F ) ) ) ) |
| 53 | 49 52 | jca | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( Fun ( P |` ( 1 ... ( # ` F ) ) ) /\ ( # ` F ) e. dom ( P |` ( 1 ... ( # ` F ) ) ) ) ) |
| 54 | fvelrn | |- ( ( Fun ( P |` ( 1 ... ( # ` F ) ) ) /\ ( # ` F ) e. dom ( P |` ( 1 ... ( # ` F ) ) ) ) -> ( ( P |` ( 1 ... ( # ` F ) ) ) ` ( # ` F ) ) e. ran ( P |` ( 1 ... ( # ` F ) ) ) ) |
|
| 55 | 53 54 | syl | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( P |` ( 1 ... ( # ` F ) ) ) ` ( # ` F ) ) e. ran ( P |` ( 1 ... ( # ` F ) ) ) ) |
| 56 | 46 55 | eqeltrrd | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( P ` ( # ` F ) ) e. ran ( P |` ( 1 ... ( # ` F ) ) ) ) |
| 57 | eleq1 | |- ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( ( P ` 0 ) e. ran ( P |` ( 1 ... ( # ` F ) ) ) <-> ( P ` ( # ` F ) ) e. ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) |
|
| 58 | 57 | 3ad2ant3 | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( P ` 0 ) e. ran ( P |` ( 1 ... ( # ` F ) ) ) <-> ( P ` ( # ` F ) ) e. ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) |
| 59 | 56 58 | mpbird | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( P ` 0 ) e. ran ( P |` ( 1 ... ( # ` F ) ) ) ) |
| 60 | 59 | snssd | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> { ( P ` 0 ) } C_ ran ( P |` ( 1 ... ( # ` F ) ) ) ) |
| 61 | 42 60 | eqsstrd | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) C_ ran ( P |` ( 1 ... ( # ` F ) ) ) ) |
| 62 | 13 61 | jca | |- ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ ( # ` F ) e. NN /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( Rel P /\ ( 1 ... ( # ` F ) ) C_ dom P ) /\ ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) C_ ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) |
| 63 | 62 | 3exp | |- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( ( # ` F ) e. NN -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( ( Rel P /\ ( 1 ... ( # ` F ) ) C_ dom P ) /\ ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) C_ ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) ) ) |
| 64 | 63 | com3l | |- ( ( # ` F ) e. NN -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( ( Rel P /\ ( 1 ... ( # ` F ) ) C_ dom P ) /\ ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) C_ ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) ) ) |
| 65 | 6 64 | sylbir | |- ( ( ( # ` F ) e. NN0 /\ 1 <_ ( # ` F ) ) -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( ( Rel P /\ ( 1 ... ( # ` F ) ) C_ dom P ) /\ ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) C_ ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) ) ) |
| 66 | 65 | expcom | |- ( 1 <_ ( # ` F ) -> ( ( # ` F ) e. NN0 -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( ( Rel P /\ ( 1 ... ( # ` F ) ) C_ dom P ) /\ ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) C_ ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) ) ) ) |
| 67 | 66 | com14 | |- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( ( # ` F ) e. NN0 -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( 1 <_ ( # ` F ) -> ( ( Rel P /\ ( 1 ... ( # ` F ) ) C_ dom P ) /\ ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) C_ ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) ) ) ) |
| 68 | 4 5 67 | sylc | |- ( F ( Walks ` G ) P -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( 1 <_ ( # ` F ) -> ( ( Rel P /\ ( 1 ... ( # ` F ) ) C_ dom P ) /\ ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) C_ ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) ) ) |
| 69 | 2 68 | syl | |- ( F ( Paths ` G ) P -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( 1 <_ ( # ` F ) -> ( ( Rel P /\ ( 1 ... ( # ` F ) ) C_ dom P ) /\ ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) C_ ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) ) ) |
| 70 | 69 | imp | |- ( ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( 1 <_ ( # ` F ) -> ( ( Rel P /\ ( 1 ... ( # ` F ) ) C_ dom P ) /\ ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) C_ ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) ) |
| 71 | 1 70 | sylbi | |- ( F ( Cycles ` G ) P -> ( 1 <_ ( # ` F ) -> ( ( Rel P /\ ( 1 ... ( # ` F ) ) C_ dom P ) /\ ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) C_ ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) ) |
| 72 | 71 | impcom | |- ( ( 1 <_ ( # ` F ) /\ F ( Cycles ` G ) P ) -> ( ( Rel P /\ ( 1 ... ( # ` F ) ) C_ dom P ) /\ ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) C_ ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) |
| 73 | imadifssran | |- ( ( Rel P /\ ( 1 ... ( # ` F ) ) C_ dom P ) -> ( ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) C_ ran ( P |` ( 1 ... ( # ` F ) ) ) -> ran P = ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) |
|
| 74 | 73 | imp | |- ( ( ( Rel P /\ ( 1 ... ( # ` F ) ) C_ dom P ) /\ ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) C_ ran ( P |` ( 1 ... ( # ` F ) ) ) ) -> ran P = ran ( P |` ( 1 ... ( # ` F ) ) ) ) |
| 75 | 74 | fveq2d | |- ( ( ( Rel P /\ ( 1 ... ( # ` F ) ) C_ dom P ) /\ ( P " ( dom P \ ( 1 ... ( # ` F ) ) ) ) C_ ran ( P |` ( 1 ... ( # ` F ) ) ) ) -> ( # ` ran P ) = ( # ` ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) |
| 76 | 72 75 | syl | |- ( ( 1 <_ ( # ` F ) /\ F ( Cycles ` G ) P ) -> ( # ` ran P ) = ( # ` ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) |
| 77 | cyclispth | |- ( F ( Cycles ` G ) P -> F ( Paths ` G ) P ) |
|
| 78 | pthdifv | |- ( F ( Paths ` G ) P -> ( P |` ( 1 ... ( # ` F ) ) ) : ( 1 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) ) |
|
| 79 | 47 | adantl | |- ( ( ( # ` F ) e. NN0 /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) -> Fun P ) |
| 80 | fzfid | |- ( ( # ` F ) e. NN0 -> ( 0 ... ( # ` F ) ) e. Fin ) |
|
| 81 | fnfi | |- ( ( P Fn ( 0 ... ( # ` F ) ) /\ ( 0 ... ( # ` F ) ) e. Fin ) -> P e. Fin ) |
|
| 82 | 35 80 81 | syl2anr | |- ( ( ( # ` F ) e. NN0 /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) -> P e. Fin ) |
| 83 | 1eluzge0 | |- 1 e. ( ZZ>= ` 0 ) |
|
| 84 | 83 | a1i | |- ( ( # ` F ) e. NN0 -> 1 e. ( ZZ>= ` 0 ) ) |
| 85 | fzss1 | |- ( 1 e. ( ZZ>= ` 0 ) -> ( 1 ... ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) ) |
|
| 86 | 84 85 | syl | |- ( ( # ` F ) e. NN0 -> ( 1 ... ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) ) |
| 87 | 86 | adantr | |- ( ( ( # ` F ) e. NN0 /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) -> ( 1 ... ( # ` F ) ) C_ ( 0 ... ( # ` F ) ) ) |
| 88 | 10 | adantl | |- ( ( ( # ` F ) e. NN0 /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) -> dom P = ( 0 ... ( # ` F ) ) ) |
| 89 | 87 88 | sseqtrrd | |- ( ( ( # ` F ) e. NN0 /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) -> ( 1 ... ( # ` F ) ) C_ dom P ) |
| 90 | 79 82 89 | 3jca | |- ( ( ( # ` F ) e. NN0 /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) -> ( Fun P /\ P e. Fin /\ ( 1 ... ( # ` F ) ) C_ dom P ) ) |
| 91 | 90 | ex | |- ( ( # ` F ) e. NN0 -> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( Fun P /\ P e. Fin /\ ( 1 ... ( # ` F ) ) C_ dom P ) ) ) |
| 92 | 5 4 91 | sylc | |- ( F ( Walks ` G ) P -> ( Fun P /\ P e. Fin /\ ( 1 ... ( # ` F ) ) C_ dom P ) ) |
| 93 | 2 92 | syl | |- ( F ( Paths ` G ) P -> ( Fun P /\ P e. Fin /\ ( 1 ... ( # ` F ) ) C_ dom P ) ) |
| 94 | 93 | adantr | |- ( ( F ( Paths ` G ) P /\ ( P |` ( 1 ... ( # ` F ) ) ) : ( 1 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) ) -> ( Fun P /\ P e. Fin /\ ( 1 ... ( # ` F ) ) C_ dom P ) ) |
| 95 | hashres | |- ( ( Fun P /\ P e. Fin /\ ( 1 ... ( # ` F ) ) C_ dom P ) -> ( # ` ( P |` ( 1 ... ( # ` F ) ) ) ) = ( # ` ( 1 ... ( # ` F ) ) ) ) |
|
| 96 | 94 95 | syl | |- ( ( F ( Paths ` G ) P /\ ( P |` ( 1 ... ( # ` F ) ) ) : ( 1 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) ) -> ( # ` ( P |` ( 1 ... ( # ` F ) ) ) ) = ( # ` ( 1 ... ( # ` F ) ) ) ) |
| 97 | ovexd | |- ( ( F ( Paths ` G ) P /\ ( P |` ( 1 ... ( # ` F ) ) ) : ( 1 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) ) -> ( 1 ... ( # ` F ) ) e. _V ) |
|
| 98 | hashf1rn | |- ( ( ( 1 ... ( # ` F ) ) e. _V /\ ( P |` ( 1 ... ( # ` F ) ) ) : ( 1 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) ) -> ( # ` ( P |` ( 1 ... ( # ` F ) ) ) ) = ( # ` ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) |
|
| 99 | 97 98 | sylancom | |- ( ( F ( Paths ` G ) P /\ ( P |` ( 1 ... ( # ` F ) ) ) : ( 1 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) ) -> ( # ` ( P |` ( 1 ... ( # ` F ) ) ) ) = ( # ` ran ( P |` ( 1 ... ( # ` F ) ) ) ) ) |
| 100 | 2 5 | syl | |- ( F ( Paths ` G ) P -> ( # ` F ) e. NN0 ) |
| 101 | hashfz1 | |- ( ( # ` F ) e. NN0 -> ( # ` ( 1 ... ( # ` F ) ) ) = ( # ` F ) ) |
|
| 102 | 100 101 | syl | |- ( F ( Paths ` G ) P -> ( # ` ( 1 ... ( # ` F ) ) ) = ( # ` F ) ) |
| 103 | 102 | adantr | |- ( ( F ( Paths ` G ) P /\ ( P |` ( 1 ... ( # ` F ) ) ) : ( 1 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) ) -> ( # ` ( 1 ... ( # ` F ) ) ) = ( # ` F ) ) |
| 104 | 96 99 103 | 3eqtr3d | |- ( ( F ( Paths ` G ) P /\ ( P |` ( 1 ... ( # ` F ) ) ) : ( 1 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) ) -> ( # ` ran ( P |` ( 1 ... ( # ` F ) ) ) ) = ( # ` F ) ) |
| 105 | 104 | ex | |- ( F ( Paths ` G ) P -> ( ( P |` ( 1 ... ( # ` F ) ) ) : ( 1 ... ( # ` F ) ) -1-1-> ( Vtx ` G ) -> ( # ` ran ( P |` ( 1 ... ( # ` F ) ) ) ) = ( # ` F ) ) ) |
| 106 | 78 105 | mpd | |- ( F ( Paths ` G ) P -> ( # ` ran ( P |` ( 1 ... ( # ` F ) ) ) ) = ( # ` F ) ) |
| 107 | 77 106 | syl | |- ( F ( Cycles ` G ) P -> ( # ` ran ( P |` ( 1 ... ( # ` F ) ) ) ) = ( # ` F ) ) |
| 108 | 107 | adantl | |- ( ( 1 <_ ( # ` F ) /\ F ( Cycles ` G ) P ) -> ( # ` ran ( P |` ( 1 ... ( # ` F ) ) ) ) = ( # ` F ) ) |
| 109 | 76 108 | eqtrd | |- ( ( 1 <_ ( # ` F ) /\ F ( Cycles ` G ) P ) -> ( # ` ran P ) = ( # ` F ) ) |