This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Singleton of function value. (Contributed by NM, 22-May-1998) (Proof shortened by Scott Fenton, 8-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fnsnfv | |- ( ( F Fn A /\ B e. A ) -> { ( F ` B ) } = ( F " { B } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasng | |- ( B e. A -> ( F " { B } ) = { y | B F y } ) |
|
| 2 | 1 | adantl | |- ( ( F Fn A /\ B e. A ) -> ( F " { B } ) = { y | B F y } ) |
| 3 | velsn | |- ( y e. { ( F ` B ) } <-> y = ( F ` B ) ) |
|
| 4 | eqcom | |- ( y = ( F ` B ) <-> ( F ` B ) = y ) |
|
| 5 | 3 4 | bitri | |- ( y e. { ( F ` B ) } <-> ( F ` B ) = y ) |
| 6 | fnbrfvb | |- ( ( F Fn A /\ B e. A ) -> ( ( F ` B ) = y <-> B F y ) ) |
|
| 7 | 5 6 | bitr2id | |- ( ( F Fn A /\ B e. A ) -> ( B F y <-> y e. { ( F ` B ) } ) ) |
| 8 | 7 | eqabcdv | |- ( ( F Fn A /\ B e. A ) -> { y | B F y } = { ( F ` B ) } ) |
| 9 | 2 8 | eqtr2d | |- ( ( F Fn A /\ B e. A ) -> { ( F ` B ) } = ( F " { B } ) ) |