This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of a finite set which is a one-to-one function is equal to the size of the function's range. (Contributed by Alexander van der Vekens, 12-Jan-2018) (Revised by AV, 4-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashf1rn | |- ( ( A e. V /\ F : A -1-1-> B ) -> ( # ` F ) = ( # ` ran F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f | |- ( F : A -1-1-> B -> F : A --> B ) |
|
| 2 | 1 | anim2i | |- ( ( A e. V /\ F : A -1-1-> B ) -> ( A e. V /\ F : A --> B ) ) |
| 3 | 2 | ancomd | |- ( ( A e. V /\ F : A -1-1-> B ) -> ( F : A --> B /\ A e. V ) ) |
| 4 | fex | |- ( ( F : A --> B /\ A e. V ) -> F e. _V ) |
|
| 5 | 3 4 | syl | |- ( ( A e. V /\ F : A -1-1-> B ) -> F e. _V ) |
| 6 | f1o2ndf1 | |- ( F : A -1-1-> B -> ( 2nd |` F ) : F -1-1-onto-> ran F ) |
|
| 7 | df-2nd | |- 2nd = ( x e. _V |-> U. ran { x } ) |
|
| 8 | 7 | funmpt2 | |- Fun 2nd |
| 9 | resfunexg | |- ( ( Fun 2nd /\ F e. _V ) -> ( 2nd |` F ) e. _V ) |
|
| 10 | 8 5 9 | sylancr | |- ( ( A e. V /\ F : A -1-1-> B ) -> ( 2nd |` F ) e. _V ) |
| 11 | f1oeq1 | |- ( ( 2nd |` F ) = f -> ( ( 2nd |` F ) : F -1-1-onto-> ran F <-> f : F -1-1-onto-> ran F ) ) |
|
| 12 | 11 | biimpd | |- ( ( 2nd |` F ) = f -> ( ( 2nd |` F ) : F -1-1-onto-> ran F -> f : F -1-1-onto-> ran F ) ) |
| 13 | 12 | eqcoms | |- ( f = ( 2nd |` F ) -> ( ( 2nd |` F ) : F -1-1-onto-> ran F -> f : F -1-1-onto-> ran F ) ) |
| 14 | 13 | adantl | |- ( ( ( A e. V /\ F : A -1-1-> B ) /\ f = ( 2nd |` F ) ) -> ( ( 2nd |` F ) : F -1-1-onto-> ran F -> f : F -1-1-onto-> ran F ) ) |
| 15 | 10 14 | spcimedv | |- ( ( A e. V /\ F : A -1-1-> B ) -> ( ( 2nd |` F ) : F -1-1-onto-> ran F -> E. f f : F -1-1-onto-> ran F ) ) |
| 16 | 15 | ex | |- ( A e. V -> ( F : A -1-1-> B -> ( ( 2nd |` F ) : F -1-1-onto-> ran F -> E. f f : F -1-1-onto-> ran F ) ) ) |
| 17 | 16 | com13 | |- ( ( 2nd |` F ) : F -1-1-onto-> ran F -> ( F : A -1-1-> B -> ( A e. V -> E. f f : F -1-1-onto-> ran F ) ) ) |
| 18 | 6 17 | mpcom | |- ( F : A -1-1-> B -> ( A e. V -> E. f f : F -1-1-onto-> ran F ) ) |
| 19 | 18 | impcom | |- ( ( A e. V /\ F : A -1-1-> B ) -> E. f f : F -1-1-onto-> ran F ) |
| 20 | hasheqf1oi | |- ( F e. _V -> ( E. f f : F -1-1-onto-> ran F -> ( # ` F ) = ( # ` ran F ) ) ) |
|
| 21 | 5 19 20 | sylc | |- ( ( A e. V /\ F : A -1-1-> B ) -> ( # ` F ) = ( # ` ran F ) ) |