This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite set of sequential nonnegative integers is the union of the singleton containing 0 and a finite set of sequential positive integers. (Contributed by AV, 20-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fz0sn0fz1 | |- ( N e. NN0 -> ( 0 ... N ) = ( { 0 } u. ( 1 ... N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elfz | |- ( N e. NN0 -> 0 e. ( 0 ... N ) ) |
|
| 2 | fzsplit | |- ( 0 e. ( 0 ... N ) -> ( 0 ... N ) = ( ( 0 ... 0 ) u. ( ( 0 + 1 ) ... N ) ) ) |
|
| 3 | 0p1e1 | |- ( 0 + 1 ) = 1 |
|
| 4 | 3 | oveq1i | |- ( ( 0 + 1 ) ... N ) = ( 1 ... N ) |
| 5 | 4 | uneq2i | |- ( ( 0 ... 0 ) u. ( ( 0 + 1 ) ... N ) ) = ( ( 0 ... 0 ) u. ( 1 ... N ) ) |
| 6 | 2 5 | eqtrdi | |- ( 0 e. ( 0 ... N ) -> ( 0 ... N ) = ( ( 0 ... 0 ) u. ( 1 ... N ) ) ) |
| 7 | 1 6 | syl | |- ( N e. NN0 -> ( 0 ... N ) = ( ( 0 ... 0 ) u. ( 1 ... N ) ) ) |
| 8 | 0z | |- 0 e. ZZ |
|
| 9 | fzsn | |- ( 0 e. ZZ -> ( 0 ... 0 ) = { 0 } ) |
|
| 10 | 8 9 | mp1i | |- ( N e. NN0 -> ( 0 ... 0 ) = { 0 } ) |
| 11 | 10 | uneq1d | |- ( N e. NN0 -> ( ( 0 ... 0 ) u. ( 1 ... N ) ) = ( { 0 } u. ( 1 ... N ) ) ) |
| 12 | 7 11 | eqtrd | |- ( N e. NN0 -> ( 0 ... N ) = ( { 0 } u. ( 1 ... N ) ) ) |