This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A (non-trivial) cycle is not a simple path. (Contributed by Alexander van der Vekens, 30-Oct-2017) (Revised by AV, 31-Jan-2021) (Proof shortened by AV, 30-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cyclnspth | |- ( F =/= (/) -> ( F ( Cycles ` G ) P -> -. F ( SPaths ` G ) P ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscycl | |- ( F ( Cycles ` G ) P <-> ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) |
|
| 2 | relpths | |- Rel ( Paths ` G ) |
|
| 3 | 2 | brrelex1i | |- ( F ( Paths ` G ) P -> F e. _V ) |
| 4 | hasheq0 | |- ( F e. _V -> ( ( # ` F ) = 0 <-> F = (/) ) ) |
|
| 5 | 4 | necon3bid | |- ( F e. _V -> ( ( # ` F ) =/= 0 <-> F =/= (/) ) ) |
| 6 | 5 | bicomd | |- ( F e. _V -> ( F =/= (/) <-> ( # ` F ) =/= 0 ) ) |
| 7 | 3 6 | syl | |- ( F ( Paths ` G ) P -> ( F =/= (/) <-> ( # ` F ) =/= 0 ) ) |
| 8 | 7 | biimpa | |- ( ( F ( Paths ` G ) P /\ F =/= (/) ) -> ( # ` F ) =/= 0 ) |
| 9 | spthdep | |- ( ( F ( SPaths ` G ) P /\ ( # ` F ) =/= 0 ) -> ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) |
|
| 10 | 9 | neneqd | |- ( ( F ( SPaths ` G ) P /\ ( # ` F ) =/= 0 ) -> -. ( P ` 0 ) = ( P ` ( # ` F ) ) ) |
| 11 | 10 | expcom | |- ( ( # ` F ) =/= 0 -> ( F ( SPaths ` G ) P -> -. ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) |
| 12 | 8 11 | syl | |- ( ( F ( Paths ` G ) P /\ F =/= (/) ) -> ( F ( SPaths ` G ) P -> -. ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) |
| 13 | 12 | con2d | |- ( ( F ( Paths ` G ) P /\ F =/= (/) ) -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> -. F ( SPaths ` G ) P ) ) |
| 14 | 13 | impancom | |- ( ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( F =/= (/) -> -. F ( SPaths ` G ) P ) ) |
| 15 | 1 14 | sylbi | |- ( F ( Cycles ` G ) P -> ( F =/= (/) -> -. F ( SPaths ` G ) P ) ) |
| 16 | 15 | com12 | |- ( F =/= (/) -> ( F ( Cycles ` G ) P -> -. F ( SPaths ` G ) P ) ) |